9,072 research outputs found
Exotic Nuclei and Matter in a Chirally Effective Approach
A relativistic approach to describe nuclear and in general strongly
interacting matter is introduced and discussed. Here, not only the nuclear
forces but also the masses of the nucleons are generated through meson fields.
Within this framework it is possible to calculate properties of finite nuclei
at a level of accuracy similar to dedicated relativistic nuclear structure
models. Due to the more general approach, a wider range of properties of
hadronic states can be investigated. A number of results for heavy and
neutron-rich nuclei toward the drip line are presented.Comment: Contribution to the Proceedings of the VII International Symposium on
EXOtic Nuclei (EXON-2014) in St. Petersburg, Russi
Parity Doublet Model applied to Neutron Stars
The Parity doublet model containing the SU(2) multiplets including the
baryons identified as the chiral partners of the nucleons is applied for
neutron star matter. The chiral restoration is analyzed and the maximum mass of
the star is calculated.Comment: Proceeding to the conference International Symposium on Exotic States
of Nuclear Matte
Modelling Hybrid Stars in Quark-Hadron Approaches
The density in the core of neutron stars can reach values of about 5 to 10
times nuclear matter saturation density. It is, therefore, a natural assumption
that hadrons may have dissolved into quarks under such conditions, forming a
hybrid star. This star will have an outer region of hadronic matter and a core
of quark matter or even a mixed state of hadrons and quarks. In order to
investigate such phases, we discuss different model approaches that can be used
in the study of compact stars as well as being applicable to a wider range of
temperatures and densities. One major model ingredient, the role of quark
interactions in the stability of massive hybrid stars is discussed. In this
context, possible conflicts with lattice QCD simulations are investigated.Comment: Contribution to the EPJA Topical Issue on "Exotic Matter in Neutron
Stars
Modeling Hybrid Stars
We study the so called hybrid stars, which are hadronic stars that contain a
core of deconfined quarks. For this purpose, we make use of an extended version
of the SU(3) chiral model. Within this approach, the degrees of freedom change
naturally from hadrons (baryon octet) to quarks (u, d, s) as the temperature
and/or density increases. At zero temperature we are still able to reproduce
massive stars, even with the inclusion of hyperons.Comment: To appear in the proceedings of Conference C12-08-0
- …