2,767 research outputs found

    Josephson squelch filter for quantum nanocircuits

    Full text link
    We fabricated and tested a squelch circuit consisting of a copper powder filter with an embedded Josephson junction connected to ground. For small signals (squelch-ON), the small junction inductance attenuates strongly from DC to at least 1 GHz, while for higher frequencies dissipation in the copper powder increases the attenuation exponentially with frequency. For large signals (squelch-OFF) the circuit behaves as a regular metal powder filter. The measured ON/OFF ratio is larger than 50dB up to 50 MHz. This squelch can be applied in low temperature measurement and control circuitry for quantum nanostructures such as superconducting qubits and quantum dots.Comment: Corrected and completed references 6,7,8. Updated some minor details in figure

    The Einstein 3-form G_a and its equivalent 1-form L_a in Riemann-Cartan space

    Get PDF
    The definition of the Einstein 3-form G_a is motivated by means of the contracted 2nd Bianchi identity. This definition involves at first the complete curvature 2-form. The 1-form L_a is defined via G_a = L^b \wedge #(o_b \wedge o_a). Here # denotes the Hodge-star, o_a the coframe, and \wedge the exterior product. The L_a is equivalent to the Einstein 3-form and represents a certain contraction of the curvature 2-form. A variational formula of Salgado on quadratic invariants of the L_a 1-form is discussed, generalized, and put into proper perspective.Comment: LaTeX, 13 Pages. To appear in Gen. Rel. Gra

    Mathematical structure of unit systems

    Get PDF
    We investigate the mathematical structure of unit systems and the relations between them. Looking over the entire set of unit systems, we can find a mathematical structure that is called preorder (or quasi-order). For some pair of unit systems, there exists a relation of preorder such that one unit system is transferable to the other unit system. The transfer (or conversion) is possible only when all of the quantities distinguishable in the latter system are always distinguishable in the former system. By utilizing this structure, we can systematically compare the representations in different unit systems. Especially, the equivalence class of unit systems (EUS) plays an important role because the representations of physical quantities and equations are of the same form in unit systems belonging to an EUS. The dimension of quantities is uniquely defined in each EUS. The EUS's form a partially ordered set. Using these mathematical structures, unit systems and EUS's are systematically classified and organized as a hierarchical tree.Comment: 27 pages, 3 figure

    Autoparallels From a New Action Principle

    Full text link
    We present a simpler and more powerful version of the recently-discovered action principle for the motion of a spinless point particle in spacetimes with curvature and torsion. The surprising feature of the new principle is that an action involving only the metric can produce an equation of motion with a torsion force, thus changing geodesics to autoparallels. This additional torsion force arises from a noncommutativity of variations with parameter derivatives of the paths due to the closure failure of parallelograms in the presence of torsionComment: Paper in src. Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Read paper directly with Netscape under http://www.physik.fu-berlin.de/~kleinert/kleiner_re243/preprint.htm

    Space-time defects and teleparallelism

    Get PDF
    We consider the class of space-time defects investigated by Puntigam and Soleng. These defects describe space-time dislocations and disclinations (cosmic strings), and are in close correspondence to the actual defects that arise in crystals and metals. It is known that in such materials dislocations and disclinations require a small and large amount of energy, respectively, to be created. The present analysis is carried out in the context of the teleparallel equivalent of general relativity (TEGR). We evaluate the gravitational energy of these space-time defects in the framework of the TEGR and find that there is an analogy between defects in space-time and in continuum material systems: the total gravitational energy of space-time dislocations and disclinations (considered as idealized defects) is zero and infinit, respectively.Comment: 22 pages, no figures, to appear in the Class. Quantum Gravit

    On certain relationships between cosmological observables in the Einstein-Cartan gravity

    Get PDF
    We show that in the Einstein-Cartan gravity it is possible to obtain a relation between Hubble's expansion and the global rotation (vorticity) of the Universe. Gravitational coupling can be reduced to dimensionless quantity of order unity, fixing the scalar mass density and the resulting negative cosmological constant at spacelike infinity. Current estimates of the expansion and rotation (see also astro-ph/9703082) of the Universe favour the massive spinning particles as candidate particles for cold and hot dark matter. Nodland and Ralston vorticity (Phys. Rev. Lett. 78 (1997) 3043) overestimates the value favoured by the Einstein-Cartan gravity for three orders of magnitude.Comment: 7 pages, LaTeX styl

    Conformal Einstein equations and Cartan conformal connection

    Get PDF
    Necessary and sufficient conditions for a space-time to be conformal to an Einstein space-time are interpreted in terms of curvature restrictions for the corresponding Cartan conformal connection

    Beam heat load analysis with COLDDIAG: a cold vacuum chamber for diagnostics

    Get PDF
    The knowledge of the heat intake from the electron beam is essential to design the cryogenic layout of superconducting insertion devices. With the aim of measuring the beam heat load to a cold bore and understanding the responsible mechanisms, a cold vacuum chamber for diagnostics (COLDDIAG) has been built. The instrumentation comprises temperature sensors, pressure gauges, mass spectrometers and retarding field analyzers, which allow to study the beam heat load and the influence of the cryosorbed gas layer. COLDDIAG was installed in the storage ring of the Diamond Light Source from September 2012 to August 2013. During this time measurements were performed for a wide range of machine conditions, employing the various measuring capabilities of the device. Here we report on the analysis of the measured beam heat load, pressure and gas content, as well as the low energy charged particle flux and spectrum as a function of the electron beam parameters

    Normal frames and the validity of the equivalence principle

    Get PDF
    We investigate the validity of the equivalence principle along paths in gravitational theories based on derivations of the tensor algebra over a differentiable manifold. We prove the existence of local bases, called normal, in which the components of the derivations vanish along arbitrary paths. All such bases are explicitly described. The holonomicity of the normal bases is considered. The results obtained are applied to the important case of linear connections and their relationship with the equivalence principle is described. In particular, any gravitational theory based on tensor derivations which obeys the equivalence principle along all paths, must be based on a linear connection.Comment: 14 pages, LaTeX 2e, the package amsfonts is neede
    • 

    corecore