28 research outputs found
Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures
Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298K, sulfuric acid concentrations between 5x10(5) and 1x10(9)cm(-3), and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximum of -1400 parts per trillion by volume (pptv). We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75ion pairs cm(-3)s(-1) to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248K with zero added ammonia, and for higher temperatures independent of NH3 levels. We compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.Peer reviewe
Observations of Diurnal to Weekly Variations of Monoterpene-Dominated Fluxes of Volatile Organic Compounds from Mediterranean Forests: Implications for Regional Modeling
The Estate of Castelporziano (Rome, Italy) hosts many ecosystems representative of Mediterranean vegetation, especially holm oak and pine forests and dune vegetation. In this work, basal emission factors (BEFs) of biogenic volatile organic compounds (BVOCs) obtained by Eddy Covariance in a field campaign using a proton transfer reaction-time-of-flight-mass spectrometer (PTR-TOF-MS) were compared to BEFs reported in previous studies that could not measure fluxes in real-time. Globally, broadleaf forests are dominated by isoprene emissions, but these Mediterranean ecosystems are dominated by strong monoterpene emitters, as shown by the new BEFs. The original and new BEFs were used to parametrize the model of emissions of gases and aerosols from nature (MEGAN v2.1), and model outputs were compared with measured fluxes. Results showed good agreement between modeled and measured fluxes when a model was used to predict radiative transfer and energy balance across the canopy. We then evaluated whether changes in BVOC emissions can affect the chemistry of the atmosphere and climate at a regional level. MEGAN was run together with the land surface model (community land model, CLM v4.0) of the community earth system model (CESM v1.0). Results highlighted that tropospheric ozone concentration and air temperature predicted from the model are sensitive to the magnitude of BVOC emissions, thus demonstrating the importance of adopting the proper BEF values for model parametrization
Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere
4 pages 359-363 in the print version, additional 7 pages online.Peer reviewe
The effect of acid-base clustering and ions on the growth of atmospheric nano-particles
The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.Peer reviewe
Recommended from our members
Observations of diurnal to weekly variations of monoterpene-dominated fluxes of volatile organic compounds from mediterranean forests: implications for regional modeling.
The Estate of Castelporziano (Rome, Italy) hosts many ecosystems representative of Mediterranean vegetation, especially holm oak and pine forests and dune vegetation. In this work, basal emission factors (BEFs) of biogenic volatile organic compounds (BVOCs) obtained by Eddy Covariance in a field campaign using a proton transfer reaction-time-of-flight-mass spectrometer (PTR-TOF-MS) were compared to BEFs reported in previous studies that could not measure fluxes in real-time. Globally, broadleaf forests are dominated by isoprene emissions, but these Mediterranean ecosystems are dominated by strong monoterpene emitters, as shown by the new BEFs. The original and new BEFs were used to parametrize the model of emissions of gases and aerosols from nature (MEGAN v2.1), and model outputs were compared with measured fluxes. Results showed good agreement between modeled and measured fluxes when a model was used to predict radiative transfer and energy balance across the canopy. We then evaluated whether changes in BVOC emissions can affect the chemistry of the atmosphere and climate at a regional level. MEGAN was run together with the land surface model (community land model, CLM v4.0) of the community earth system model (CESM v1.0). Results highlighted that tropospheric ozone concentration and air temperature predicted from the model are sensitive to the magnitude of BVOC emissions, thus demonstrating the importance of adopting the proper BEF values for model parametrization
Qualitative and quantitative characterization of volatile organic compound emissions from cut grass
Mechanical wounding of plants triggers the release of a blend of reactive biogenic volatile organic compounds (BVOCs). During and after mowing and harvesting of managed grasslands, significant BVOC emissions have the potential to alter the physical and chemical properties of the atmosphere and lead to ozone and aerosol formation with consequences for regional air quality. We show that the amount and composition of BVOCs emitted per unit dry weight of plant material is comparable between laboratory enclosure measurements of artificially severed grassland plant species and in situ ecosystem-scale flux measurements above a temperate mountain grassland during and after periodic mowing and harvesting. The investigated grassland ecosystem emitted annually up to 130 mg carbon m(−2) in response to cutting and drying, the largest part being consistently represented by methanol and a blend of green leaf volatiles (GLV). In addition, we report the plant species-specific emission of furfural, terpenoid-like compounds (e.g. camphor), and sesquiterpenes from cut plant material, which may be used as tracers for the presence of given plant species in the ecosystem
Acetaldehyde exchange above a managed temperate mountain grassland
An overview of acetaldehyde exchange above a
managed temperate mountain grassland in Austria over four
growing seasons is presented. The meadow acted as a net
source of acetaldehyde in all 4 years, emitting between 7 and
28 mgCm−2 over the whole growing period. The cutting of
the meadow resulted in huge acetaldehyde emission bursts
of up to 16.5 nmolm−2 s−1 on the day of harvesting or 1 day
later. During undisturbed conditions both periods with net
uptake and net emissions of acetaldehyde were observed. The
bidirectional nature of acetaldehyde fluxes was also reflected
by clear diurnal cycles during certain time periods, indicating
strong deposition processes before the first cut and emission
towards the end of the growing season.
The analysis of acetaldehyde compensation points revealed
a complex relationship between ambient acetaldehyde
mixing ratios and respective fluxes, significantly influenced
by multiple environmental parameters and variable throughout
the year. As a major finding of this study, we identified
both a positive and negative correlation between concentration
and flux on a daily scale, where soil temperature and soil
water content were the most significant factors in determining
the direction of the slope. In turn, this bidirectional relationship
on a daily scale resulted in compensation points between
0.40 and 0.54 ppbv, which could be well explained by
collected ancillary data. We conclude that in order to model
acetaldehyde fluxes at the site in Neustift on a daily scale
over longer time periods, it is crucial to know the type of
relationship, i.e., the direction of the slope, between mixing
ratios and fluxes on a given day.ISSN:1680-7375ISSN:1680-736
Acetaldehyde exchange above a managed temperate mountain grassland
ISSN:1680-7375ISSN:1680-736