4 research outputs found

    JETFLOW: Generating jets with Normalizing Flows using the jet mass as condition and constraint

    No full text
    In this study, jets with up to 30 particles are modelled using Normalizing Flows with Rational Quadratic Spline coupling layers. The invariant mass of the jet is a powerful global feature to control whether the flow-generated data contains the same high-level correlations as the training data. The use of normalizing flows without conditioning shows that they lack the expressive power to do this. Using the mass as a condition for the coupling transformation enhances the model's performance on all tracked metrics. In addition, we demonstrate how to sample the original mass distribution with the use of the empirical cumulative distribution function and westudy the usefulness of including an additional mass constraint in the loss term. On the JetNet dataset, our model shows state-of-the-art performance combined with a general model and stable training

    Quantum Angle Generator for Image Generation

    No full text
    The Quantum Angle Generator (QAG) is a new generative model for quantum computers. It consists of a parameterized quantum circuit trained with an objective function. The QAG model utilizes angle encoding for the conversion between the generated quantum data and classical data. Therefore, it requires one qubit per feature or pixel, while the output resolution is adjusted by the number of shots performing the image generation. This approach allows the generation of highly precise images on recent quantum computers. In this paper, the model is optimised for a High Energy Physics (HEP) use case generating simplified one-dimensional images measured by a specific particle detector, a calorimeter. With a reasonable number of shots, the QAG model achieves an elevated level of accuracy. The advantages of the QAG model are lined out - such as simple and stable training, a reasonable amount of qubits, circuit calls, circuit size and computation time compared to other quantum generative models, e.g. quantum GANs (qGANs) and Quantum Circuit Born Machines
    corecore