9,421 research outputs found

    First-order layering and critical wetting transitions in non-additive hard sphere mixtures

    Full text link
    Using fundamental-measure density functional theory we investigate entropic wetting in an asymmetric binary mixture of hard spheres with positive non-additivity. We consider a general planar hard wall, where preferential adsorption is induced by a difference in closest approach of the different species and the wall. Close to bulk fluid-fluid coexistence the phase rich in the minority component adsorbs either through a series of first-order layering transitions, where an increasing number of liquid layers adsorbs sequentially, or via a critical wetting transition, where a thick film grows continuously.Comment: 4 pages, 4 figure

    A model for orientation effects in electron‐transfer reactions

    Get PDF
    A method for solving the single‐particle Schrödinger equation with an oblate spheroidal potential of finite depth is presented. The wave functions are then used to calculate the matrix element T_BA which appears in theories of nonadiabatic electron transfer. The results illustrate the effects of mutual orientation and separation of the two centers on TBA. Trends in these results are discussed in terms of geometrical and nodal structure effects. Analytical expressions related to T_BA for states of spherical wells are presented and used to analyze the nodal structure effects for T_BA for the spheroidal wells

    The Hidden Nuclear Spectrum of the Luminous IRAS Source FSC10214++4724

    Get PDF
    Optical spectropolarimetry of the luminous IRAS source FSC10214++4724 (z=2.286=2.286) reveals that the strong (\twid17\%) linear polarization detected by Lawrence \etal\/ is shared by both the narrow UV emission lines and the underlying continuum. This observation and the brightness of the source rule out synchrotron emission and dichroic extinction by dust as the polarizing mechanism, leaving scattering as the only plausible cause of the polarized emission. The narrowness of the lines requires that the scatterers be dust grains or cool (<1.6×<1.6\times104^4~K) electrons. We can recover the spectrum that is incident on the scattering medium provided we make some reasonable assumptions regarding the source geometry. The scattered UV spectrum has a power law index α\alpha~ of −1.2±0.6-1.2 \pm 0.6 (FΜ∝ΜαF_\nu\propto\nu^\alpha), steeper than what would be expected from a young burst of star formation, but similar to many AGN.Comment: 10 pages, with figure, uuencoded postscript Institute for Advanced Study number AST 94/1

    An Extraordinary Scattered Broad Emission Line in a Type 2 QSO

    Get PDF
    An infrared-selected, narrow-line QSO has been found to exhibit an extraordinarily broad Halpha emission line in polarized light. Both the extreme width (35,000 km/sec full-width at zero intensity) and 3,000 km/sec redshift of the line centroid with respect to the systemic velocity suggest emission in a deep gravitational potential. An extremely red polarized continuum and partial scattering of the narrow lines at a position angle common to the broad-line emission imply extensive obscuration, with few unimpeded lines of sight to the nucleus.Comment: 4 pages, 1 figure, to appear in the Astrophysical Journal Letter

    The Polarized Spectrum of Apm 08279+5255

    Get PDF
    We report the discovery of significant linear polarization (p > 1%) in the hyperluminous z=3.87 BALQSO APM~08279+5255. The polarization spectrum is complex, with properties similar to those of other, lower redshift but more highly polarized BALQSOs. The resonance emission lines are unpolarized while the absorption troughs show polarization similar to or higher than the continuum. In particular, an apparent increase of polarization in the trough covering 1000-1030 angstroms (rest) supports the interpretation of this feature as a broad absorption component associated with OVI/Ly_beta local to the QSO, as opposed to an intervening damped Ly_alpha absorption system. The elevated polarization in some of the absorption features implies that we view the scattered (polarized) spectrum through a sightline with less absorbing material than the direct spectrum. Therefore, the complex structure of the polarization spectrum in this brilliant lensed BALQSO suggests that it will be an important laboratory for studying the structure of QSOs at high redshift.Comment: 8 pages, 1 figure. Accepted for publication in The Astrophysical Journal Letter

    Brain oscillations differentially encode noxious stimulus intensity and pain intensity

    Get PDF
    Noxious stimuli induce physiological processes which commonly translate into pain. However, under certain conditions, pain intensity can substantially dissociate from stimulus intensity, e.g. during longer-lasting pain in chronic pain syndromes. How stimulus intensity and pain intensity are differentially represented in the human brain is, however, not yet fully understood. We therefore used electroencephalography (EEG) to investigate the cerebral representation of noxious stimulus intensity and pain intensity during 10 min of painful heat stimulation in 39 healthy human participants. Time courses of objective stimulus intensity and subjective pain ratings indicated a dissociation of both measures. EEG data showed that stimulus intensity was encoded by decreases of neuronal oscillations at alpha and beta frequencies in sensorimotor areas. In contrast, pain intensity was encoded by gamma oscillations in the medial prefrontal cortex. Contrasting right versus left hand stimulation revealed that the encoding of stimulus intensity in contralateral sensorimotor areas depended on the stimulation side. In contrast, a conjunction analysis of right and left hand stimulation revealed that the encoding of pain in the medial prefrontal cortex was independent of the side of stimulation. Thus, the translation of noxious stimulus intensity into pain is associated with a change from a spatially specific representation of stimulus intensity by alpha and beta oscillations in sensorimotor areas to a spatially independent representation of pain by gamma oscillations in brain areas related to cognitive and affective-motivational processes. These findings extend the understanding of the brain mechanisms of nociception and pain and their dissociations during longer-lasting pain as a key symptom of chronic pain syndromes

    Prefrontal gamma oscillations encode tonic pain in humans

    Get PDF
    Under physiological conditions, momentary pain serves vital protective functions. Ongoing pain in chronic pain states, on the other hand, is a pathological condition that causes widespread suffering and whose treatment remains unsatisfactory. The brain mechanisms of ongoing pain are largely unknown. In this study, we applied tonic painful heat stimuli of varying degree to healthy human subjects, obtained continuous pain ratings, and recorded electroencephalograms to relate ongoing pain to brain activity. Our results reveal that the subjective perception of tonic pain is selectively encoded by gamma oscillations in the medial prefrontal cortex. We further observed that the encoding of subjective pain intensity experienced by the participants differs fundamentally from that of objective stimulus intensity and from that of brief pain stimuli. These observations point to a role for gamma oscillations in the medial prefrontal cortex in ongoing, tonic pain and thereby extend current concepts of the brain mechanisms of pain to the clinically relevant state of ongoing pain. Furthermore, our approach might help to identify a brain marker of ongoing pain, which may prove useful for the diagnosis and therapy of chronic pain

    Detection of Extended Polarized Ultraviolet Radiation from the z = 1.82 Radio Galaxy 3C 256

    Full text link
    We have detected spatially extended linear polarized UV emission from the high-redshift radio galaxy 3C~256 (z=1.82z=1.82). A spatially integrated (7.8â€Čâ€Č7.8'' diameter aperture) measurement of the degree of polarization of the V−V-band (rest frame 0.19 ÎŒ\mum) emission yields a value of 16.4\% (±2.2\pm 2.2\%) with a position angle of 42.∘442{}\rlap{\rm .}^\circ 4 (±3.∘9\pm 3{}\rlap{\rm .}^\circ 9), orthogonal to the position angle on the sky of the major axis of the extended emission. The peak emission measured with a 3.6â€Čâ€Č3.6'' diameter circular aperture is 11.7\% (±1.5\pm 1.5\%) polarized with a position angle of 42.∘442{}\rlap{\rm .}^\circ 4 (±3.∘6\pm 3{}\rlap{\rm .}^\circ 6). An image of the polarized flux is presented, clearly displaying that the polarized flux is extended and present over the entire extent of the object. While it has been suggested that the UV continuum of 3C~256 might be due to star formation (Elston 1988) or a protogalaxy (Eisenhardt \& Dickinson 1993) based on its extremely blue spectral energy distribution and similar morphology at UV and visible wavelengths, we are unable to reconcile the observed high degree of polarization with such a model. While the detection of polarized emission from HZRGs has been shown to be a common phenomena, 3C~256 is only the third object for which a measurement of the extended polarized UV emission has been presented. These data lend additional support to the suggestion first made by di Serego Alighieri and collaborators that the ``alignment effect'', the tendency for the extended UV continuum radiation and line emission from HZRGs to be aligned with the major axis of the extended radio emission, is in large part due to scattering of anisotropic nuclear emission.Comment: 11 pages, LaTeX (aaspp style) file. Figure available by request to [email protected]
    • 

    corecore