357 research outputs found

    Modern and Cenozoic records of seawater magnesium from foraminiferal Mg isotopes

    Get PDF
    Magnesium is an element critically involved in the carbon cycle, because weathering of Ca-Mg silicates removes atmospheric CO2 into rivers, and formation of Ca-Mg carbonates in the oceans removes carbon from the ocean-atmosphere system. Hence the Mg cycle holds the potential to provide valuable insights into Cenozoic climate-system history, and the shift during this time from a greenhouse to icehouse state. We present Mg isotope ratios for the past 40 Myr using planktic foraminifers as an archive. Modern foraminifera, which discriminate against elemental and isotopically heavy Mg during calcification, show no correlation between the Mg isotope composition (δ26Mg, relative to DSM-3) and temperature, Mg / Ca or other parameters such as carbonate saturation (ΔCO3). However, inter-species isotopic differences imply that only well-calibrated single species should be used for reconstruction of past seawater. Seawater δ26Mg inferred from the foraminiferal record decreased from ~0‰ at 15 Ma, to −0.83‰ at the present day, which coincides with increases in seawater lithium and oxygen isotope ratios. It strongly suggests that neither Mg concentrations nor isotope ratios are at steady state in modern oceans, given its ~10 Myr residence time. From these data, we have developed a dynamic box model to understand and constrain changes in Mg sources to the oceans (rivers) and Mg sinks (dolomitisation and hydrothermal alteration). Our estimates of seawater Mg concentrations through time are similar to those independently determined by pore waters and fluid inclusions. Modelling suggests that dolomite formation and the riverine Mg flux are the primary controls on the δ26Mg of seawater, while hydrothermal Mg removal and the δ26Mg of rivers are more minor controls. Using Mg riverine flux and isotope ratios inferred from the 87Sr / 86Sr record, the modelled Mg removal by dolomite formation shows minima in the Oligocene and at the present day (with decreasing trends from 15 Ma), both coinciding with rapid decreases in global temperatures

    Quantum optical coherence tomography with dispersion cancellation

    Full text link
    We propose a new technique, called quantum optical coherence tomography (QOCT), for carrying out tomographic measurements with dispersion-cancelled resolution. The technique can also be used to extract the frequency-dependent refractive index of the medium. QOCT makes use of a two-photon interferometer in which a swept delay permits a coincidence interferogram to be traced. The technique bears a resemblance to classical optical coherence tomography (OCT). However, it makes use of a nonclassical entangled twin-photon light source that permits measurements to be made at depths greater than those accessible via OCT, which suffers from the deleterious effects of sample dispersion. Aside from the dispersion cancellation, QOCT offers higher sensitivity than OCT as well as an enhancement of resolution by a factor of 2 for the same source bandwidth. QOCT and OCT are compared using an idealized sample.Comment: 19 pages, 4 figure

    How robust is a 2SC quark matter phase under compact star constraints?

    Full text link
    We study the phase structure and equation of state for two-flavor quark matter at low temperature under compact star constraints within a nonlocal chiral quark model. We find that the occurence of a two-flavor color superconducting (2SC) phase is sensitive to variations of both the formfactor of the interaction and the ratio \eta between the coupling constants in the diquark and the scalar meson channels. Our study suggests that for standard values of the coupling ratio 0.5<\eta<0.75 either the 2SC phase does not occur (Gaussian formfactor) or it exists only in a mixed phase with normal quark matter (NQ-2SC) with a volume fraction less than 20 - 40 %, occuring at high baryon chemical potentials \mu_B >1200 MeV and most likely not relevant for compact stars. We also present the relevant region of the phase diagram for compact star applications and obtain that no gapless 2SC occurs at low temperatures.Comment: 19 pages, 9 figures, Subsec.2.5: "Phase diagram" adde

    Negative Kaons in Dense Baryonic Matter

    Get PDF
    Kaon polarization operator in dense baryonic matter of arbitrary isotopic composition is calculated including s- and p-wave kaon-baryon interactions. The regular part of the polarization operator is extracted from the realistic kaon-nucleon interaction based on the chiral and 1/N_c expansion. Contributions of the Lambda(1116), Sigma(1195), Sigma*(1385) resonances are taken explicitly into account in the pole and regular terms with inclusion of mean-field potentials. The baryon-baryon correlations are incorporated and fluctuation contributions are estimated. Results are applied for K- in neutron star matter. Within our model a second-order phase transition to the s-wave K- condensate state occurs at rho_c \gsim 4 \rho_0 once the baryon-baryon correlations are included. We show that the second-order phase transition to the p-wave KK^- condensate state may occur at densities ρc3÷5ρ0\rho_c \sim 3\div 5 \rho_0 in dependence on the parameter choice. We demonstrate that a first-order phase transition to a proton-enriched (approximately isospin-symmetric) nucleon matter with a p-wave K- condensate can occur at smaller densities, \rho\lsim 2 \rho_0. The transition is accompanied by the suppression of hyperon concentrations.Comment: 41 pages, 24 figures, revtex4 styl

    Quantum driven Bounce of the future Universe

    Full text link
    It is demonstrated that due to back-reaction of quantum effects, expansion of the universe stops at its maximum and takes a turnaround. Later on, it contracts to a very small size in finite future time. This phenomenon is followed by a " bounce" with re-birth of an exponentially expanding non-singular universe

    Transient receptor potential vanilloid 4 channel deficiency aggravates tubular damage after acute renal ischaemia reperfusion

    Get PDF
    Transient receptor potential vanilloid 4 (TRPV4) cation channels are functional in all renal vascular segments and mediate endothelium-dependent vasorelaxation. Moreover, they are expressed in distinct parts of the tubular system and activated by cell swelling. Ischaemia/reperfusion injury (IRI) is characterized by tubular injury and endothelial dysfunction. Therefore, we hypothesised a putative organ protective role of TRPV4 in acute renal IRI. IRI was induced in TRPV4 deficient (Trpv4 KO) and wild-type (WT) control mice by clipping the left renal pedicle after right-sided nephrectomy. Serum creatinine level was higher in Trpv4 KO mice 6 and 24 hours after ischaemia compared to WT mice. Detailed histological analysis revealed that IRI caused aggravated renal tubular damage in Trpv4 KO mice, especially in the renal cortex. Immunohistological and functional assessment confirmed TRPV4 expression in proximal tubular cells. Furthermore, the tubular damage could be attributed to enhanced necrosis rather than apoptosis. Surprisingly, the percentage of infiltrating granulocytes and macrophages were comparable in IRI-damaged kidneys of Trpv4 KO and WT mice. The present results suggest a renoprotective role of TRPV4 during acute renal IRI. Further studies using cell-specific TRPV4 deficient mice are needed to clarify cellular mechanisms of TRPV4 in IRI

    Disease overarching mechanisms that explain and predict outcome of patients with high cardiovascular risk: rationale and design of the Berlin Long-term Observation of vascular events (BeLOVE) study

    Get PDF
    BACKGROUND: Cardiovascular disease (CVD) is the leading cause of premature death worldwide. Effective and individualized treatment requires exact knowledge about both risk factors and risk estimation. Most evidence for risk prediction currently comes from population-based studies on first incident cardiovascular events. In contrast, little is known about the relevance of risk factors for the outcome of patients with established CVD or those who are at high risk of CVD, including patients with type 2 diabetes. In addition, most studies focus on individual diseases, whereas less is known about disease overarching risk factors and cross-over risk. AIM: The aim of BeLOVE is to improve short- and long-term prediction and mechanistic understanding of cardiovascular disease progression and outcomes in very high-risk patients, both in the acute as well as in the chronic phase, in order to provide the basis for improved, individualized management. STUDY DESIGN: BeLOVE is an observational prospective cohort study of patients of both sexes aged >18 in selected Berlin hospitals, who have a high risk of future cardiovascular events, including patients with a history of acute coronary syndrome (ACS), acute stroke (AS), acute heart failure (AHF), acute kidney injury (AKI) or type 2 diabetes with manifest target-organ damage. BeLOVE includes 2 subcohorts: The acute subcohort includes 6500 patients with ACS, AS, AHF, or AKI within 2-8 days after their qualifying event, who undergo a structured interview about medical history as well as blood sample collection. The chronic subcohort includes 6000 patients with ACS, AS, AHF, or AKI 90 days after event, and patients with type 2 diabetes (T2DM) and target-organ damage. These patients undergo a 6-8 hour deep phenotyping program, including detailed clinical phenotyping from a cardiological, neurological and metabolic perspective, questionnaires including patient-reported outcome measures (PROMs)as well as magnetic resonance imaging. Several biological samples are collected (i.e. blood, urine, saliva, stool) with blood samples collected in a fasting state, as well as after a metabolic challenge (either nutritional or cardiopulmonary exercise stress test). Ascertainment of major adverse cardiovascular events (MACE) will be performed in all patients using a combination of active and passive follow up procedures, such as on-site visits (if applicable), telephone interviews, review of medical charts, and links to local health authorities. Additional phenotyping visits are planned at 2, 5 and 10 years after inclusion into the chronic subcohort. FUTURE PERSPECTIVE: BeLOVE provides a unique opportunity to study both the short- and long-term disease course of patients at high cardiovascular risk through innovative and extensive deep phenotyping. Moreover, the unique study design provides opportunities for acute and post-acute inclusion and allows us to derive two non-nested yet overlapping sub-cohorts, tailored for upcoming research questions. Thereby, we aim to study disease overarching research questions, to understand crossover risk, and to find similarities and differences between clinical phenotypes of patients at high cardiovascular risk

    A Planck-scale axion and SU(2) Yang-Mills dynamics: Present acceleration and the fate of the photon

    Full text link
    From the time of CMB decoupling onwards we investigate cosmological evolution subject to a strongly interacting SU(2) gauge theory of Yang-Mills scale Λ104\Lambda\sim 10^{-4} eV (masquerading as the U(1)YU(1)_{Y} factor of the SM at present). The viability of this postulate is discussed in view of cosmological and (astro)particle physics bounds. The gauge theory is coupled to a spatially homogeneous and ultra-light (Planck-scale) axion field. As first pointed out by Frieman et al., such an axion is a viable candidate for quintessence, i.e. dynamical dark energy, being associated with today's cosmological acceleration. A prediction of an upper limit Δtmγ=0\Delta t_{m_\gamma=0} for the duration of the epoch stretching from the present to the point where the photon starts to be Meissner massive is obtained: Δtmγ=02.2\Delta t_{m_\gamma=0}\sim 2.2 billion years.Comment: v3: consequences of an error in evolution equation for coupling rectified, only a minimal change in physics results, two refs. adde

    Non-vacuum Solutions of Bianchi Type VI_0 Universe in f(R) Gravity

    Full text link
    In this paper, we solve the field equations in metric f(R) gravity for Bianchi type VI_0 spacetime and discuss evolution of the expanding universe. We find two types of non-vacuum solutions by taking isotropic and anisotropic fluids as the source of matter and dark energy. The physical behavior of these solutions is analyzed and compared in the future evolution with the help of some physical and geometrical parameters. It is concluded that in the presence of isotropic fluid, the model has singularity at t~=0\tilde{t}=0 and represents continuously expanding shearing universe currently entering into phantom phase. In anisotropic fluid, the model has no initial singularity and exhibits the uniform accelerating expansion. However, the spacetime does not achieve isotropy as tt\rightarrow\infty in both of these solutions.Comment: 20 pages, 5 figures, accepted for publication in Astrophys. Space Sc
    corecore