76 research outputs found
Predicting electronic structures at any length scale with machine learning
The properties of electrons in matter are of fundamental importance. They
give rise to virtually all molecular and material properties and determine the
physics at play in objects ranging from semiconductor devices to the interior
of giant gas planets. Modeling and simulation of such diverse applications rely
primarily on density functional theory (DFT), which has become the principal
method for predicting the electronic structure of matter. While DFT
calculations have proven to be very useful to the point of being recognized
with a Nobel prize in 1998, their computational scaling limits them to small
systems. We have developed a machine learning framework for predicting the
electronic structure on any length scale. It shows up to three orders of
magnitude speedup on systems where DFT is tractable and, more importantly,
enables predictions on scales where DFT calculations are infeasible. Our work
demonstrates how machine learning circumvents a long-standing computational
bottleneck and advances science to frontiers intractable with any current
solutions. This unprecedented modeling capability opens up an inexhaustible
range of applications in astrophysics, novel materials discovery, and energy
solutions for a sustainable future
The information for catching fly balls: judging and intercepting virtual balls in a CAVE
Visually guided action implies the existence of information as well as a control law relating that information to movement. For ball catching, the Chapman Strategy - keeping constant the rate of change of the tangent of the elevation angle (d(tan(α))/dt) - leads a catcher to the right location at the right time to intercept a fly ball. Previous studies showed the ability to detect the information and the consistency of running patterns with the use of the strategy. However, only direct manipulation of information can show its use. Participants were asked to intercept virtual balls in a Cave Automated Virtual Environment (CAVE) or to judge whether balls would pass behind or in front of them. Catchers in the CAVE successfully intercepted virtual balls with their forehead. Furthermore, the timing of judgments was related to the patterns of changing d(tan(α))/dt. The advantages and disadvantages of a CAVE as a tool for studying interceptive action are discussed
Branch xylem density variations across Amazonia
International audienceMeasurements of branch xylem density, Dx, were made for 1466 trees representing 503 species, sampled from 80 sites across the Amazon basin. Measured values ranged from 240 kg m?3 for a Brosimum parinarioides from Tapajos in West Pará, Brazil to 1130 kg m?3 for an Aiouea sp. from Caxiuana, Central Pará, Brazil. Analysis of variance showed significant differences in average Dx across the sample plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that geographic location and plot accounted for 33% of the variation with species identity accounting for an additional 27%; the remaining "residual" 40% of the variance accounted for by tree to tree (within species) variation. Variations in plot means, were, however, hardly accountable at all by differences in species composition. Rather, it would seem that variations of xylem density at plot level must be explained by the effects of soils and/or climate. This conclusion is supported by the observation that the xylem density of the more widely distributed species varied systematically from plot to plot. Thus, as well as having a genetic component branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing and in a predictable manner. Exceptions to this general rule may be some pioneers belonging to Pourouma and Miconia and some species within the genera Brosimum, Rinorea and Trichillia which seem to be more constrained in terms of this plasticity than most species sampled as part of this study
Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties
Forest structure and dynamics have been noted to vary across the Amazon Basin in an east-west gradient in a pattern which coincides with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates.
To test this hypothesis and assess the importance of edaphic properties in affect forest structure and dynamics, soil and plant samples were collected in a total of 59 different forest plots across the Amazon Basin. Samples were analysed for exchangeable cations, C, N, pH with various Pfractions also determined. Physical properties were also examined and an index of soil physical quality developed.
Overall, forest structure and dynamics were found to be strongly and quantitatively related to edaphic conditions. Tree turnover rates emerged to be mostly influenced by soil physical properties whereas forest growth rates were mainly related to a measure of available soil phosphorus, although also dependent on rainfall amount and distribution. On the other hand, large scale variations in forest biomass could not be explained by any of the edaphic properties measured, nor by variation in climate.
A new hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining forest disturbance levels, species composition and forest productivity on a Basin wide scale
Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate
Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the interacting effects of soil physical and chemical properties with climate. A hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining endogenous disturbance levels, species composition, and forest productivity across the Amazon Basin. © 2012 Author(s). CC Attribution 3.0 License
Criterion Validity of the Financial Skills Subscale of the Direct Assessment of Functional Status Scale
Among the severely mentally ill, some individuals with schizophrenia or schizoaffective disorder can manage their finances independently, while others depend upon a court-appointed guardian or a representative payee. The present study examined the criterion validity of the financial skills subscale of the Direct Assessment of Functional Status (DAFS) scale in classifying those who manage their finances independently from those who do not. Scores on the financial skills subscale of the DAFS scale of 25 severely mentally ill outpatients without a guardian/payee were compared to scores of 24 severely mentally ill outpatients with a guardian/payee; 25 non-mentally ill participants served as controls. Logistic regression analyses, Bayesian statistics, and Receiver Operating Characteristic analyses revealed moderate classification accuracy in a sample with mild cognitive impairment. These analyses were also conducted on Mini-Mental State Examination (MMSE) scores and revealed generally lower accuracy than the DAFS financial skills subscale. The DAFS financial skills subscale can inform the clinician\u27s opinion about the financial capacity of the severely mentally ill
Aboretum_heteroblasty_survey
This folder contains data and images for the 25 species collected at the Arnold Arboretum (Figure 6, Table S1)
Data from: Leaf form evolution in Viburnum parallels variation within individual plants
Few studies have critically evaluated how morphological variation within individual organisms corresponds to variation within and among species. Sub-individual variation in plants facilitates such studies because their indeterminate, modular growth generates multiple serially homologous structures along growing axes. Focusing on leaf form, we evaluate how sub-individual trait variation relates to leaf evolution across Viburnum, a clade of woody angiosperms. In Viburnum we infer multiple independent origins of wide/lobed leaves with toothed margins from ancestors with elliptical, smooth-margined leaves. We document leaf variation along the branches of individual plants of 28 species and among populations across the wide range of V. dentatum. We conclude that when novel leaf forms evolved in Viburnum, they were intercalated at the beginning of the seasonal leaf sequence, which then generated a repeated spectrum of leaf forms along each branch (seasonal heteroblasty). We hypothesize that the existence of such a spectrum then facilitated additional evolutionary shifts, including reversions to more ancestral forms. We argue that the recurrent production of alternative phenotypes provides opportunities to canalize the production of particular forms, and that this phenomenon has played an important role in generating macro-scale patterns
- …