87 research outputs found

    Implementation of Cavity Squeezing of a Collective Atomic Spin

    Full text link
    We squeeze unconditionally the collective spin of a dilute ensemble of laser-cooled rubidium-87 atoms using their interaction with a driven optical resonator. The shape and size of the resulting spin uncertainty region are well described by a simple analytical model [M.H.S., I.D.L., V.V., arXiv:0911.3936] through two orders of magnitude in the effective interaction strength, without free parameters. We deterministically generate states with up to 5.6(6) dB of metrologically relevant spin squeezing on the canonical rubidium-87 hyperfine clock transition.Comment: 4 pages, 2 figures. To be published in Phys. Rev. Lett. Some additional details and clarified wording in response to referee comments. Figures and results unchange

    Squeezing the Collective Spin of a Dilute Atomic Ensemble by Cavity Feedback

    Full text link
    We propose and analyze a simple method to squeeze dynamically and unconditionally the collective spin of a dilute atomic ensemble by interaction with a driven mode of an optical resonator, as recently demonstrated [I. D. L., M. H. S., and V. V., Phys. Rev. Lett. 104, 073602 (2010)]. We show that substantial squeezing can be achieved in the regime of strong collective ensemble-resonator coupling. The squeezing is ultimately limited either by photon emission into free space or by the curvature of the Bloch sphere. We derive both limits and show where each prevails.Comment: 4 pages, 2 figures. Minor revision. To appear in Phys. Rev.

    One- and two-axis squeezing of atomic ensembles in optical cavities

    Get PDF
    The strong light-matter coupling attainable in optical cavities enables the generation of highly squeezed states of atomic ensembles. It was shown in [Phys. Rev. A 66, 022314 (2002)] how an effective one-axis twisting Hamiltonian can be realized in a cavity setup. Here, we extend this work and show how an effective two-axis twisting Hamiltonian can be realized in a similar cavity setup. We compare the two schemes in order to characterize their advantages. In the absence of decoherence, the two-axis Hamiltonian leads to more squeezing than the one-axis Hamiltonian. If limited by decoherence from spontaneous emission and cavity decay, we find roughly the same level of squeezing for the two schemes scaling as (NC)^(1/2) where C is the single atom cooperativity and N is the total number of atoms. When compared to an ideal squeezing operation, we find that for specific initial states, a dissipative version of the one-axis scheme attains higher fidelity than the unitary one-axis scheme or the two-axis scheme. However, the unitary one-axis and two-axis schemes perform better for general initial states.Comment: 13 pages, 6 figure

    Collective state measurement of mesoscopic ensembles with single-atom resolution

    Full text link
    For mesoscopic ensembles containing 100 or more atoms we measure the total atom number and the number of atoms in a specific hyperfine state with single-atom resolution. The measurement detects the atom-induced shift of the resonance frequency of an optical cavity containing the ensemble. This work extends the range of cavity-based detection with single-atom resolution by more than an order of magnitude in atom number, and provides the readout capability necessary for Heisenberg-limited interferometry with atomic ensembles.Comment: 5 pages, 4 pdf figure

    Optomechanical Cavity Cooling of an Atomic Ensemble

    Full text link
    We demonstrate cavity sideband cooling of a single collective motional mode of an atomic ensemble down to a mean phonon occupation number of 2.0(-0.3/+0.9). Both this minimum occupation number and the observed cooling rate are in good agreement with an optomechanical model. The cooling rate constant is proportional to the total photon scattering rate by the ensemble, demonstrating the cooperative character of the light-emission-induced cooling process. We deduce fundamental limits to cavity-cooling either the collective mode or, sympathetically, the single-atom degrees of freedom.Comment: Paper with supplemental material: 4+6 pages, 4 figures. Minor revisions of text. Supplemental material shortened by removal of supplementary figur

    States of an Ensemble of Two-Level Atoms with Reduced Quantum Uncertainty

    Full text link
    We generate entangled states of an ensemble of 5*10^4 rubidium-87 atoms by optical quantum nondemolition measurement. The resonator-enhanced measurement leaves the atomic ensemble, prepared in a superposition of hyperfine clock levels, in a squeezed spin state. By comparing the resulting reduction of quantum projection noise (up to 8.8(8) dB) with the concomitant reduction of coherence, we demonstrate a clock input state with spectroscopic sensitivity 3.0(8) dB beyond the standard quantum limit.Comment: Letter (4 pages, 3 figures) followed by Auxiliary Material (10 pages, 6 figures). Minor changes in presentation and analysis of data. Significant expansion of Auxiliary Material. Broken images fixe

    Unitary Cavity Spin Squeezing by Quantum Erasure

    Full text link
    Deterministic light-induced spin squeezing in an atomic gas is limited by photon shot noise or, equivalently, by atomic state information escaping with the light field mediating the effective atom-atom interaction. We show theoretically that the performance of cavity spin squeezing [M.H. Schleier-Smith, I.D. Leroux, and V. Vuleti\'{c}, Phys. Rev. A 81, 021804(R) (2010)] can be substantially improved by erasing the light-atom entanglement, and propose several methods for doing so. Accounting for light scattering into free space, quantum erasure improves the scaling of cavity squeezing from S^(-1/2) to S^(-2/3), where S is the total atomic spin.Comment: 10 pages, 6 figures; sections reordered and text edited for clarit

    Threshold Photoelectron Spectrum of Cyclobutadiene: Comparison with Time-Dependent Wavepacket Simulations

    Get PDF
    The C4H4 isomer cyclobutadiene (CBD) is the prime model for antiaromaticity and thus a molecule of considerable interest in chemistry. Because it is highly reactive, it can only be studied under isolated conditions. Its electronic structure is characterized by a pseudo-Jahn–Teller effect in the neutral and a E ⊗ β Jahn–Teller effect in the cation. As a result, recording photoelectron spectra as well as describing them theoretically has been challenging. Here we present the photoion mass-selected threshold photoelectron spectrum of cyclobutadiene together with a simulation based on time-dependent wavepacket dynamics that includes vibronic coupling in the ion, taking into account eight vibrational modes in the cation. Excellent agreement between theory and experiment is found, and the ionization energy is revised to 8.06 ± 0.02 eV
    • …
    corecore