13,569 research outputs found
Is MS1054-03 an exceptional cluster? A new investigation of ROSAT/HRI X-ray data
We reanalyzed the ROSAT/HRI observation of MS1054-03, optimizing the channel
HRI selection and including a new exposure of 68 ksec. From a wavelet analysis
of the HRI image we identify the main cluster component and find evidence for
substructure in the west, which might either be a group of galaxies falling
onto the cluster or a foreground source. Our 1-D and 2-D analysis of the data
show that the cluster can be fitted well by a classical betamodel centered only
20arcsec away from the central cD galaxy. The core radius and beta values
derived from the spherical model(beta = 0.96_-0.22^+0.48) and the elliptical
model (beta = 0.73+/-0.18) are consistent. We derived the gas mass and total
mass of the cluster from the betamodel fit and the previously published ASCA
temperature (12.3^{+3.1}_{-2.2} keV). The gas mass fraction at the virial
radius is fgas = (14[-3,+2.5]+/-3)% for Omega_0=1, where the errors in brackets
come from the uncertainty on the temperature and the remaining errors from the
HRI imaging data. The gas mass fraction computed for the best fit ASCA
temperature is significantly lower than found for nearby hot clusters,
fgas=20.1pm 1.6%. This local value can be matched if the actual virial
temperature of MS1054-032 were close to the lower ASCA limit (~10keV) with an
even lower value of 8 keV giving the best agreement. Such a bias between the
virial and measured temperature could be due to the presence of shock waves in
the intracluster medium stemming from recent mergers. Another possibility, that
reconciles a high temperature with the local gas mass fraction, is the
existence of a non zero cosmological constant.Comment: 12 pages, 5 figures, accepted for publication in Ap
The Stellar Population of Stripped Cluster Spiral NGC 4522: A Local Analog to K+A Galaxies?
We present observations of the stripped Virgo Cluster spiral NGC 4522, a
clear, nearby example of a galaxy currently undergoing ISM-ICM stripping.
Utilizing SparsePak integral field spectroscopy on the WIYN 3.5m telescope and
GALEX UV photometry, we present an analysis of the outer disk (r > 3 kpc)
stellar population of this galaxy, beyond the HI and Halpha truncation radius.
We find that the star formation in the gas-stripped outer disk ceased very
recently, ~100 Myr ago, in agreement with previous claims that this galaxy is
currently being stripped. At the time of this stripping, data and models
suggest that the galaxy experienced a modest starburst. The stripping is
occurring in a region of the cluster well outside the cluster core, likely
because this galaxy is experiencing extreme conditions from a dynamic ICM due
to an ongoing sub-cluster merger. The outer disk has a spectrum of a K+A
galaxy, traditionally observed in high-redshift cluster galaxies. In the case
of NGC 4522, a K+A spectrum is formed by simple stripping of the interstellar
gas by the hot intracluster medium. These data show K+A spectra can be created
by cluster processes and that these processes likely extend beyond the cluster
core.Comment: 5 pages, 3 figures, accepted for publication in ApJ Letter
White Matter Structural Connectivity is Associated with Sensorimotor Function in Stroke Survivors
Purpose Diffusion tensor imaging (DTI) provides functionally relevant information about white matter structure. Local anatomical connectivity information combined with fractional anisotropy (FA) and mean diffusivity (MD) may predict functional outcomes in stroke survivors. Imaging methods for predicting functional outcomes in stroke survivors are not well established. This work uses DTI to objectively assess the effects of a stroke lesion on white matter structure and sensorimotor function. Methods A voxel-based approach is introduced to assess a stroke lesion\u27s global impact on motor function. Anatomical T1-weighted and diffusion tensor images of the brain were acquired for nineteen subjects (10 post-stroke and 9 age-matched controls). A manually selected volume of interest was used to alleviate the effects of stroke lesions on image registration. Images from all subjects were registered to the images of the control subject that was anatomically closest to Talairach space. Each subject\u27s transformed image was uniformly seeded for DTI tractography. Each seed was inversely transformed into the individual subject space, where DTI tractography was conducted and then the results were transformed back to the reference space. A voxel-wise connectivity matrix was constructed from the fibers, which was then used to calculate the number of directly and indirectly connected neighbors of each voxel. A novel voxel-wise indirect structural connectivity (VISC) index was computed as the average number of direct connections to a voxel\u27s indirect neighbors. Voxel-based analyses (VBA) were performed to compare VISC, FA, and MD for the detection of lesion-induced changes in sensorimotor function. For each voxel, a t-value was computed from the differences between each stroke brain and the 9 controls. A series of linear regressions was performed between Fugl-Meyer (FM) assessment scores of sensorimotor impairment and each DTI metric\u27s log number of voxels that differed from the control group. Results Correlation between the logarithm of the number of significant voxels in the ipsilesional hemisphere and total Fugl-Meyer score was moderate for MD (R2 = 0.512), and greater for VISC (R2 = 0.796) and FA (R2 = 0.674). The slopes of FA (p = 0.0036), VISC (p = 0.0005), and MD (p = 0.0199) versus the total FM score were significant. However, these correlations were driven by the upper extremity motor component of the FM score (VISC: R2 = 0.879) with little influence of the lower extremity motor component (FA: R2 = 0.177). Conclusion The results suggest that a voxel-wise metric based on DTI tractography can predict upper extremity sensorimotor function of stroke survivors, and that supraspinal intraconnectivity may have a less dominant role in lower extremity function
Chiral expansion of the nucleon mass to order q^6
We present the results of a complete two-loop calculation at order q^6 of the
nucleon mass in manifestly Lorentz-invariant chiral perturbation theory. The
renormalization is performed using the reformulated infrared renormalization,
which allows for the treatment of two-loop integrals while preserving all
relevant symmetries, in particular chiral symmetry.Comment: 6 pages, 2 figures, REVTeX
Changes in Hemodynamic Responses in Chronic Stroke Survivors Do Not Affect fMRI Signal Detection in a Block Experimental Design
The use of canonical functions to model BOLD-fMRI data in people post-stroke may lead to inaccurate descriptions of task-related brain activity. The purpose of this study was to determine whether the spatiotemporal profile of hemodynamic responses (HDRs) obtained from stroke survivors during an event-related experiment could be used to develop individualized HDR functions that would enhance BOLD-fMRI signal detection in block experiments. Our long term goal was to use this information to develop individualized HDR functions for stroke survivors that could be used to analyze brain activity associated with locomotor-like movements. We also aimed to examine the reproducibility of HDRs obtained across two scan sessions in order to determine whether data from a single event-related session could be used to analyze block data obtained in subsequent sessions. Results indicate that the spatiotemporal profile of HDRs measured with BOLD-fMRI in stroke survivors was not the same as that observed in individuals without stroke. We observed small between-group differences in the rates of rise and decline of HDRs that were more apparent in individuals with cortical as compared to subcortical stroke. There were no differences in the peak or time to peak of HDRs in people with and without stroke. Of interest, differences in HDRs were not as substantial as expected from previous reports and were not large enough to necessitate the use of individualized HDR functions to obtain valid measures of movement-related brain activity. We conclude that all strokes do not affect the spatiotemporal characteristics of HDRs in such a way as to produce inaccurate representations of brain activity as measured by BOLD-fMRI. However, care should be taken to identify individuals whose BOLD-fMRI data may not provide an accurate representation of underlying brain activation when canonical models are used. Examination of HDRs need not be done for each scan session, as our data suggest that the characteristics of HDRs in stroke survivors are reproducible across days
- …