2,515 research outputs found
Geometrical Magnetic Frustration in Rare Earth Chalcogenide Spinels
We have characterized the magnetic and structural properties of the CdLn2Se4
(Ln = Dy, Ho), and CdLn2S4 (Ln = Ho, Er, Tm, Yb) spinels. We observe all
compounds to be normal spinels, possessing a geometrically frustrated
sublattice of lanthanide atoms with no observable structural disorder. Fits to
the high temperature magnetic susceptibilities indicate these materials to have
effective antiferromagnetic interactions, with Curie-Weiss temperatures theta ~
-10 K, except CdYb2S4 for which theta ~ -40 K. The absence of magnetic long
range order or glassiness above T = 1.8 K strongly suggests that these
materials are a new venue in which to study the effects of strong geometrical
frustration, potentially as rich in new physical phenomena as that of the
pyrochlore oxides.Comment: 17 pages, 5 figures, submitted to Phys Rev B; added acknowledgement
Quantum and thermal spin relaxation in diluted spin ice: Dy(2-x)MxTi2O7 (M = Lu, Y)
We have studied the low temperature a.c. magnetic susceptibility of the
diluted spin ice compound Dy(2-x)MxTi2O7, where the magnetic Dy ions on the
frustrated pyrochlore lattice have been replaced with non-magnetic ions, M = Y
or Lu. We examine a broad range of dilutions, 0 <= x <= 1.98, and we find that
the T ~ 16 K freezing is suppressed for low levels of dilution but re-emerges
for x > 0.4 and persists to x = 1.98. This behavior can be understood as a
non-monotonic dependence of the quantum spin relaxation time with dilution. The
results suggest that the observed spin freezing is fundamentally a single spin
process which is affected by the local environment, rather than the development
of spin-spin correlations as earlier data suggested.Comment: 26 pages, 9 figure
Quantum-Classical Reentrant Relaxation Crossover in Dy2Ti2O7 Spin-Ice
We have studied spin relaxation in the spin ice compound Dy2Ti2O7 through
measurements of the a.c. magnetic susceptibility. While the characteristic spin
relaxation time is thermally activated at high temperatures, it becomes almost
temperature independent below Tcross ~ 13 K, suggesting that quantum tunneling
dominates the relaxation process below that temperature. As the low-entropy
spin ice state develops below Tice ~ 4 K, the spin relaxation time increases
sharply with decreasing temperature, suggesting the emergence of a collective
degree of freedom for which thermal relaxation processes again become important
as the spins become highly correlated
Boundary conditions and the entropy bound
The entropy-to-energy bound is examined for a quantum scalar field confined
to a cavity and satisfying Robin condition on the boundary of the cavity. It is
found that near certain points in the space of the parameter defining the
boundary condition the lowest eigenfrequency (while non-zero) becomes
arbitrarily small. Estimating, according to Bekenstein and Schiffer, the ratio
by the -function, , we compute
explicitly and find that it is not bounded near those points that signals
violation of the bound. We interpret our results as imposing certain
constraints on the value of the boundary interaction and estimate the forbidden
region in the parameter space of the boundary conditions.Comment: 16 pages, latex, v2: typos corrected, to appear in Phys.Rev.
Low Temperature Spin Freezing in Dy2Ti2O7 Spin Ice
We report a study of the low temperature bulk magnetic properties of the spin
ice compound Dy2Ti2O7 with particular attention to the (T < 4 K) spin freezing
transition. While this transition is superficially similar to that in a spin
glass, there are important qualitative differences from spin glass behavior:
the freezing temperature increases slightly with applied magnetic field, and
the distribution of spin relaxation times remains extremely narrow down to the
lowest temperatures. Furthermore, the characteristic spin relaxation time
increases faster than exponentially down to the lowest temperatures studied.
These results indicate that spin-freezing in spin ice materials represents a
novel form of magnetic glassiness associated with the unusual nature of
geometrical frustration in these materials.Comment: 24 pages, 8 figure
Semiclassical degeneracies and ordering for highly frustrated magnets in a field
We discuss ground state selection by quantum fluctuations in frustrated
magnets in a strong magnetic field. We show that there exist dynamical
symmetries -- one a generalisation of Henley's gauge-like symmetry for
collinear spins, the other the quantum relict of non-collinear weathervane
modes -- which ensure a partial survival of the classical degeneracies. We
illustrate these for the case of the kagome magnet, where we find zero-point
energy differences to be rather small everywhere except near the collinear
`up-up-down` configurations, where there is rotational but not translational
symmetry breaking. In the effective Hamiltonian, we demonstrate the presence of
a term sensitive to a topological `flux'. We discuss the connection of such
problems to gauge theories by casting the frustrated lattices as medial
lattices of appropriately chosen simplex lattices, and in particular we show
how the magnetic field can be used to tune the physical sector of the resulting
gauge theories.Comment: 10 pages, 8 figure
Ga-NMR local susceptibility of the kagome-based magnet SrCr_9pGa_(12-9p)O_19. A high temperature study
We report a high- Ga-NMR study in the kagome-based antiferromagnetic
compound SrCrGaO (), and present a
refined mean-field analysis of the high T local NMR susceptibility of Cr
frustrated moments. We find that the intralayer kagome coupling is K,
and the interlayer coupling through non-kagome Cr moments is K. The ratio confirms the common belief that
the frustrated entity is a pyrochlore slab.Comment: 8 pages, 4 figures Conference paper: Highly Frustrated Magnetism
2000, Waterloo (Canada) Submitted to Canadian Journal of Physic
Quantum Mechanics, Common Sense and the Black Hole Information Paradox
The purpose of this paper is to analyse, in the light of information theory
and with the arsenal of (elementary) quantum mechanics (EPR correlations,
copying machines, teleportation, mixing produced in sub-systems owing to a
trace operation, etc.) the scenarios available on the market to resolve the
so-called black-hole information paradox. We shall conclude that the only
plausible ones are those where either the unitary evolution of quantum
mechanics is given up, in which information leaks continuously in the course of
black-hole evaporation through non-local processes, or those in which the world
is polluted by an infinite number of meta-stable remnants.Comment: 15 pages, Latex, CERN-TH.6889/9
Magnetic anisotropy and geometrical frustration in the Ising spin-chain system Sr5Rh4O12
A structural and thermodynamic study of the newly synthesized single crystal
Sr5Rh4O12 is reported. Sr5Rh4O12 consists of a triangular lattice of spin
chains running along the c-axis. It is antiferromagnetically ordered below 23 K
with the intrachain and interchain coupling being ferromagnetic (FM) and
antiferromagnetic (AFM), respectively. There is strong evidence for an Ising
character in the interaction and geometrical frustration that causes incomplete
long-range AFM order. The isothermal magnetization exhibits two step-like
transitions leading to a ferrimagnetic state at 2.4 T and a FM state at 4.8 T,
respectively. Sr5Rh4O12 is a unique frustrated spin-chain system ever found in
4d and 5d based materials without a presence of an incomplete 3d-electron
shell.Comment: 15 pages, 4 figure
- …