11 research outputs found
Een Passende Beoordeling van de effecten van de toename van het aantal civiele vliegbewegingen in de omgeving van Den helder Airport
Waargenomen reacties van vogels op civiel vliegverkeer lunnen niet worden aangemerkt als zijnde een significante aantasting van de beschermde natuurwaarden, afgemeten naar de aantallen vogels die erbij betrokken zijn en van het gedrag en de voedselopname van ter plaatse foeragerende vogels
Effecten van militaire en civiele helikopters op vogels op het Kooijhoekschor
Het Maritiem Vliegkamp De Kooy en de civiele medegebruiker van het vliegveld, Den Helder Airport, zijn gelegen op korte afstand van de Waddenzee. Bij de nadering of bij het vertrek van het vliegveld moet, afhankelijk van de windrichting, in de helft van de gevallen op relatief geringe hoogte over de Waddenzee worden gevlogen. Het vliegveld wordt vooral gebruikt ten behoeve van helikopterverkeer. Den Helder Airport gebruikt het vliegveld vooral voor het vervoer van offshore-arbeiders van en naar olie- en gasplatforms op het Nederlands Continentaal Plat. De groep Maritieme Helikopters is de belangrijkste gebruiker vanuit het Ministerie van Defensie. De 12 hier gestationeerde NH90 helikopters hebben De Kooy als thuisbasis. Ook het onderhoud aan deze helikopters vindt hier plaats. Het vliegkamp wordt vooral gebruikt voor trainingsvluchten. De effecten van de uitbreiding van civiel helikopterverkeer op vogels zijn de afgelopen jaren gemonitord. Tijdens deze onderzoeken zijn ook steeds de effecten van militair vliegverkeer meegenomen. Er is na 2006 echter vrijwel geen onderzoek uitgevoerd op de minder intensief gebruikte aan- en afvliegroute via het Kooijhoekschor. Doel van het in deze rapportage beschreven deelonderzoek was de effecten van militair vliegverkeer op deze route nauwkeuriger in kaart te brengen en te actualiseren. Primaire doel van het in deze rapportage beschreven onderzoek was het bepalen van het effect van vliegbewegingen met militaire helikopters op wad- en watervogels op de locatie Kooijhoekschor, gelegen aan de rand van het Balgzand, ten zuidoosten van het Maritiem Vliegkamp De Kooy. Daarbij is vooral gekeken of overvliegende helikopters vogels doen opvliegen, hoe vaak dit gebeurt en beoordeeld of dit wellicht negatieve effecten voor vogels kan hebben
Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications
Coherent elastic neutrino-nucleus scattering (CENS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CENS has long proven difficult to detect, since the deposited energy into the nucleus is keV. In 2017, the COHERENT collaboration announced the detection of CENS using a stopped-pion source with CsI detectors, followed up the detection of CENS using an Ar target. The detection of CENS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CENS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CENS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics
Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications
Coherent elastic neutrino-nucleus scattering (CENS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CENS has long proven difficult to detect, since the deposited energy into the nucleus is keV. In 2017, the COHERENT collaboration announced the detection of CENS using a stopped-pion source with CsI detectors, followed up the detection of CENS using an Ar target. The detection of CENS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CENS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CENS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics
Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications
Coherent elastic neutrino-nucleus scattering (CENS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CENS has long proven difficult to detect, since the deposited energy into the nucleus is keV. In 2017, the COHERENT collaboration announced the detection of CENS using a stopped-pion source with CsI detectors, followed up the detection of CENS using an Ar target. The detection of CENS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CENS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CENS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics
Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications
Coherent elastic neutrino-nucleus scattering (CENS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CENS has long proven difficult to detect, since the deposited energy into the nucleus is keV. In 2017, the COHERENT collaboration announced the detection of CENS using a stopped-pion source with CsI detectors, followed up the detection of CENS using an Ar target. The detection of CENS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CENS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CENS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics
Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications
Coherent elastic neutrino-nucleus scattering (CENS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CENS has long proven difficult to detect, since the deposited energy into the nucleus is keV. In 2017, the COHERENT collaboration announced the detection of CENS using a stopped-pion source with CsI detectors, followed up the detection of CENS using an Ar target. The detection of CENS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CENS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CENS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics
Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications
Coherent elastic neutrino-nucleus scattering (CENS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CENS has long proven difficult to detect, since the deposited energy into the nucleus is keV. In 2017, the COHERENT collaboration announced the detection of CENS using a stopped-pion source with CsI detectors, followed up the detection of CENS using an Ar target. The detection of CENS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CENS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CENS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics