29 research outputs found

    Edge Site Catalyzed Vanadyl Oxidation Elucidated by Operando Raman Spectroscopy

    Get PDF
    The kinetic processes responsible for the efficient oxidation of dissolved vanadyl oxide species in the positive half-cell of a vanadium flow battery are far from being understood. Despite recent evidence that the reaction is most strongly favored at hydrogen-terminated graphite edge sites, a mechanism involving oxygen-containing surface groups has still been frequently reproduced to date. In this work, operando Raman spectroscopy follows the reaction at the interface between graphite-based model electrodes and vanadium-containing sulfuric acid as the electrolyte. The potential-dependent growth of different vibrational modes is related to the electrocatalytic activity of the sample and allows to track the oxidation of the electrolyte species. Moreover, the results express vanadium reaction intermediates of dimeric origin only on the edge-exposed surface of graphite, which exhibits significantly higher electrochemical activity. No interaction with surface oxygen postulated before could be observed for the active electrodes at potentials relevant to the reaction. Instead, a new growing graphite-related feature shows direct electronic interactions between vanadium ions and carbon atoms during charge transfer

    Structure–activity correlation of thermally activated graphite electrodes for vanadium flow batteries

    Get PDF
    Thermal activation of graphite felts has proven to be a valuable technique for electrodes in vanadium flow batteries to improve their sluggish reaction kinetics. In the underlying work, a novel approach is presented to describe the morphological, microstructural, and chemical changes that occur as a result of the activation process. All surface properties were monitored at different stages of thermal activation and correlated with the electrocatalytic activity. The subsequently developed model consists of a combined ablation and damaging process observed by Raman spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. Initially, the outermost layer of adventitious carbon is removed and sp(2) layers of graphite are damaged in the oxidative atmosphere, which enhances the electrocatalytic activity by introducing small pores with sharp edges. In later stages, the concentration of reaction sites does not increase further, but the defect geometry changes significantly, leading to lower activity. This new perspective on thermal activation allows several correlations between structural and functional properties of graphite for the vanadium redox couple, describing the importance of structural defects over surface chemistry

    Work Function Describes the Electrocatalytic Activity of Graphite for Vanadium Oxidation

    Get PDF
    In many applications such as vanadium flow batteries, graphite acts as an electrocatalyst and its surface structure therefore determines the efficiency of energy conversion. Due to the heterogeneity of the material, activity descriptors cannot always be evaluated with certainty because the introduction of defects is accompanied by a change in surface chemistry. Moreover, surface defects occur in multiple dimensions, and their occurrence and influence on catalysis must be separated. In this work, we have studied the surface of graphite felt electrodes by different methods in terms of morphology and chemistry to understand the electrocatalytic activity. We then defined the interaction between the surface and the electronic structure with particular emphasis on the work function and valence band. Using model catalysts with different architectures, we established correlations between the electrocatalytic activity and the size of the conjugation and the orientation of the edges. Finally, it was possible to link the level of the work function to the electrocatalytic activity

    Origin of the catalytic activity at graphite electrodes in vanadium flow batteries

    Get PDF
    For many electrochemical devices that use carbon-based materials such as electrolyzers, supercapacitors, and batteries, oxygen functional groups (OFGs) are considered essential to facilitate electron transfer. Researchers implement surface-active OFGs to improve the electrocatalytic properties of graphite felt electrodes in vanadium flow batteries. Herein, we show that graphitic defects and not OFGs are responsible for lowering the activation energy barrier and thus enhance the charge transfer properties. This is proven by a thermal deoxygenation procedure, in which specific OFGs are removed before electrochemical cycling. The electronic and microstructural changes associated with deoxygenation are studied by quasi in situ X-ray photoelectron and Raman spectroscopy. The removal of oxygen groups at basal and edge planes improves the activity by introducing new active edge sites and carbon vacancies. OFGs hinder the charge transfer at the graphite–electrolyte interface. This is further proven by modifying the sp2 plane of graphite felt electrodes with oxygen-containing pyrene derivatives. The electrochemical evolution of OFGs and graphitic defects are studied during polarization and long-term cycling conditions. The hypothesis of increased activity caused by OFGs was refuted and hydrogenated graphitic edge sites were identified as the true reason for this increase

    Systematic characterization of degraded anion exchange membranes retrieved from vanadium redox flow battery field tests

    Get PDF
    Commercially available anion exchange membranes were retrieved from VRFB field tests and their degradation due to the various operation conditions is analyzed by in-situ and ex-situ measurements. Ion exchange capacity, permeability and swelling power are used as direct criteria for irreversible changes. Small-angle X-ray scattering (SAXS) and Differential scanning calorimetry (DSC) analyses are used as fingerprint methods and provide information about the morphology and change of the structural properties. A decrease in crystallinity can be detected due to membrane degradation, and, in addition, an indication of reduced polymer chain length is found. While the proton diffusion either increase or decline significantly, the ion exchange capacity and swelling power both are reduced. The observed extent of changes was in good agreement with in-situ measurements in a test cell, where the coulombic and voltage efficiencies are reduced compared to a pristine reference material due to the degradation process

    A Crosslinked Polyethyleneglycol Solid Electrolyte Dissolving Lithium Bis(trifluoromethylsulfonyl)imide for Rechargeable Lithium Batteries

    Get PDF
    Replacing liquid electrolytes with solid ones can provide advantages in safety, and all-solid-state batteries with solid electrolytes are proposed to solve the issue of the formation of lithium dendrites. In this study, a crosslinked polymer composite solid electrolyte was presented, which enabled the construction of lithium batteries with outstanding electrochemical behavior over long-term cycling. The crosslinked polymeric host was synthesized through polymerization of the terminal amines of O,O-bis(2-aminopropyl) polypropylene glycol-blockpolyethylene glycol-block-polypropylene glycol and terminal epoxy groups of bisphenol A diglycidyl ether at 90°C and provided an amorphous matrix for Li⁺ dissolution. This composite solid electrolyte containing Li⁺ salt and garnet filler exhibited high flexibility, which supported the formation of favorable interfaces with the active materials, and possessed enough mechanical strength to suppress the penetration of lithium dendrites. Ionic conductivities higher than 5.0x10⁻⁴ Scm⁻¹ above 45°C were obtained as well as a wide electrochemical stability window (>4.51 V vs. Li/Li⁺) and a high Li⁺ diffusion coefficient (≈16.6x10⁻¹³m² s¯¹). High cycling stability (>500 cycles or 1000 h) was demonstrated

    Functionalization of Graphite Electrodes with Aryl Diazonium Salts for Lithium‐Ion Batteries

    Get PDF
    The functionalization of electrode surfaces is a useful approach to gain a better understanding of solid–electrolyte interphase formation and battery performance in lithium-ion batteries (LIBs). Electrografting and deprotection of alkyl silyl protected ethynyl aryl diazonium salts on graphite electrodes were performed. Furthermore, electrografting of aryl diazonium salts carrying functional groups such as amino, carboxy and nitro, and their influence on the electrochemical performance in LIBs were investigated. The drawbacks of electrografted and especially deprotected samples were evaluated and compared to corresponding in situ grafted samples. While electrografted samples tend to lower the delithiation capacities, in situ grafted samples, except amino groups, reveal higher capacities. Ethynyl (TMS) shows improved capacities at 1 C and better capacity retention compared to the pristine graphite electrode. Additionally, the Coulombic efficiency of the first cycle was enhanced for in situ grafted samples

    Understanding efficient phosphorus-functionalization of graphite for vanadium flow batteries

    Get PDF
    Numerous surface treatment methods are known to enhance the electrochemical activity of graphite felt (GF), such as thermal activation or attachment of nanoparticulate catalysts. The integration of heteroatoms into the graphite lattice at the surface could be a promising technique for reliable and efficient electrode activation. However, these functionalization techniques are based on thermochemical activation, which makes it difficult to distinguish between activity effects other than foreign atom integration, such as defects and other surface groups that must be considered. In this work, we analyzed commercial and synthetic phosphorus-doped graphene and GF using different electrochemical and physicochemical techniques. Despite a high doping concentration, the activity of the commercial powder bonded to GF and coated on glassy carbon remained limited due to the low degree of graphitization and high oxygen content. Instead, a low phosphorus concentration of <1 at% combined with a high degree of graphitization increased the catalytic activity. Building on these findings, GF was rationally modified, resulting in twice the power density compared to the original material in full cell tests
    corecore