1,152 research outputs found

    The halt of deep convection in the Greenland Sea: A natural experiment for the study of their causes and effects

    Get PDF
    There are only a few sites where the deep ocean is ventilated from the surface. The responsible process known as deep convection is recognized to be a key process on the Earth’s climate system, but still it is scarcely observed, and its good representation by global oceanographic and climate models remains unclear. In the Arctic Ocean, the halt of deep convection in the Greenland Sea during the last three decades serves as a natural experiment to study: (1) the conditions that drive the occurrence or not of deep convection and (2) the effects of the halt of deep convection on the thermohaline properties of the deep water masses and circulation both locally and in adjacent ocean basins. Combining oceanic and atmospheric in-situ data together with reanalysis data, we observe that not only on average the winter net heat losses from the ocean to the atmosphere (Qo) have decreased during the last three decades in the Greenland Sea ( Qo (before the 1980s- after the 1980s) = 25 Wm-2) but the intensity and number of strong cooling events (Qo 800Wm-2). This last value for convection reaching 2000 m in the Greenland Sea seems critical to make the mixed layer deepening from being a non-penetrative process to one arrested by baroclinic instabilities. Besides, changes in the wind stress curl and preconditioning for deep convection have occurred, hindering also the occurrence of deep convection. Concerning the effects of the halt of deep convection, hydrographic data reveal that the temperature between 2000 meters depth and the sea floor has risen by 0.3 C in the last 30 years, which is ten times higher than the temperature increase in the global ocean on average, and salinity rose by 0.02 because import of relatively warm and salty Arctic Ocean deep waters continued. The necessary transports to explain the observed changes suggest an increase of Arctic Ocean deep water transport that would have compensated the decrease in deep water formation rate after the 1980s. The effects of these changes in adjacent basins remain unstudied, but the bottom waters seem to be upwelled towards the slope and the Jan Mayen ridge, being an exit for the Greenland Sea deep waters.0,000

    GSH Attenuates Organ Injury and Improves Function after Transplantation of Fatty Livers

    Get PDF
    Ischemia-reperfusion injury (IRI) is increased after transplantation of steatotic livers. Since those livers are increasingly used for transplantation, protective strategies must be developed. Reactive oxygen species (ROS) play a key role in hepatic IRI. In lean organs, glutathione (GSH) is an efficient scavenger of ROS, diminishing IRI. The aim of this study was to evaluate whether GSH also protects steatotic allografts from IRI following transplantation. Fatty or lean livers were explanted from 10-week-old obese or lean Zucker rats and preserved (obese 4 h, lean 24 h) in hypothermic University of Wisconsin solution. Arterialized liver transplantation was then performed in lean syngeneic Zucker rats. Recipients of fatty livers were treated with GSH (200 mu mol/h/kg) or saline during reperfusion (2 h, n = 5). Parameters of hepatocellular damage and bile flow were measured. Transplantation of steatotic livers enhanced early reperfusion injury compared to lean organs as measured by increased aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase plasma levels. Bile flow was also reduced in steatotic grafts. Intravenous administration of GSH effectively decreased liver damage in fatty allografts and resulted in improved bile flow. Intravenous application of GSH effectively reduces early IRI in steatotic allografts and improves recovery of these marginal donor organs following transplantation. Copyright (C) 2010 S. Karger AG, Base

    RV POSEIDON Cruise Report POS420 COWACSS Biological observation and sampling of cold-water corals to investigate impacts on climate change

    Get PDF
    Trondheim – (Kristiansund) – Kiel 08. – (25.) – 30.09.201

    Wendelstein 7-X Torus Hall Layout and System Integration

    Get PDF

    Shape-memory polymers as flexible resonator substrates for continuously tunable organic DFB lasers

    Get PDF
    We introduce shape-memory polymers (SMP) as substrate material for active optical devices. As an exemplary application we build a tunable organic semiconductor distributed feedback (DFB) laser. Hence, we transfer a second order Bragg grating with a period of 400 nm into SMP foils by hot embossing. The composite organic gain medium Alq3:DCM evaporated on the SMP substrate serves as laser active material. Mechanical stretching of the substrate increases the grating period temporarily and triggering the shape-memory effect afterwards reduces the period on demand. In this way, we can adjust the grating period to achieve a broad continuously tuning of the laser emission wavelength by 30 nm

    Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    Get PDF
    International audienceDetailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 ?m; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 ?g m?3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 ?g m?3). The relative proportions of non-refractory submicron particle components were: (23±39)% ammonium nitrate, (27±23)% ammonium sulfate, and (50±40)% organics (OM1). OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. This finding was confirmed by low abundance of PAHs (?3) and EC (?3) in PM2.5 and detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes). New particle formation was observed almost every day with particle number concentrations exceeding 104 cm?3 (nighttime background level 1000?2000 cm?3). Closer inspection of two major events indicated that the observed nucleation agrees with ternary H2SO4/H2O/NH3 nucleation and that condensation of both organic and inorganic species contributed to particle growth
    • …
    corecore