89,619 research outputs found

    Introduction: Advancing Mariology at Marquette University

    Get PDF

    Are We Making Smart Pumps Smarter?

    Get PDF
    Background: Medication errors comprise a significant proportion of medical errors, and are abundant, costly, and associated with causing harm to patients via adverse drug events. The most serious medication errors often involve IV medications. Smart pumps were developed to improve patient safety by reducing medication errors. While some studies have found that smart pumps do not decrease medication errors, most have found they are effective to some degree. It is believed that routinely analyzing data on smart pump alerts, making corresponding adjustments in the drug libraries, and analyzing those adjustments can reduce alarm fatigue, which may then decrease medication errors by resulting in less smart pump users overriding the alerts and utilizing workarounds of smart pump safety features. Objective: The objective of this study is to assess if changes made to the Indiana University Health system smart pump drug library decreased nuisance alerts by comparing the actions taken in response to alerts before and after the changes were made. Methods: For a given change made to the Indiana University Health smart pump drug library on April 1, 2016, actions taken in response to alerts corresponding to that change three months prior to and three months after the change were analyzed. The primary outcome was the percent of total alerts that were overrides. Using data from the smart pumps, the number of overrides, reprograms, cancels, and total alerts for each drug in the first and second quarter were recorded. The percentage of total alerts that were overrides, the percentage of total alerts that were reprograms, and the ratio of overrides to reprograms for each quarter were calculated. Results: Analysis was conducted on 8 drugs: carboplatin, fentanyl PCA, hydromorphone PCA, morphine PCA, morphine PCA 10-24kg, morphine PCA \u3e40kg, naloxone, and octreotide. From the first quarter to the second quarter, the percent of overrides increased for 3 drugs, but for all 3, the number of overrides and total alerts decreased. Of the 5 drugs that had a decrease in the percent of overrides, 3 had an increase in the number of overrides and total alerts. Only 2 drugs had a decrease in the percent of overrides and the number of overrides and total alerts. Statistical significance was achieved only for hydromorphone PCA and morphine PCA. The difference between the first and second quarters in the all the measured outcomes varied between the drugs. Conclusions: Forming any definitive conclusions was difficult due to the results containing a significant amount of variation. The literature suggests methods to improve smart pump usage, and improve medication safety by extension. These methods are interfacing smart pumps with computerized physician order entry, clinical decision support systems, electronic medical record/electronic medication administration record, pharmacy information systems, bar-coded medication administration, and laboratory data, as well as improving smart pump safety features compliance through education of smart pump users, leadership support, including/consulting smart pump users in drug library design, and routinely using the event log data as a component of a continuous quality improvement program. These methods are all in line with the current, trending belief that the best method for preventing medication errors is making changes to the medication use system as a whole to correct underlying systems failures instead of addressing a single point, such a smart pump alerts

    Status and challenges of simulations with dynamical fermions

    Full text link
    An overview over the current state of algorithms for dynamical fermion simulations is given. In particular some insight into the functioning of the determinant spitting techniques is discussed. The critical slowing down of the simulations towards the continuum limit and the role of the boundary conditions is also reviewed.Comment: 20 pages, 9 figures, plenary talk presented at the 30th International Symposium on Lattice Field Theory - Lattice 2012, June 24-29, 2012 Cairns, Australi

    Gravitomagnetic Effects

    Full text link
    The paper summarizes the most important effects in Einsteinian gravitomagnetic fields related to propagating light rays, moving clocks and atoms, orbiting objects, and precessing spins. Emphasis is put onto the gravitational interaction of spinning objects. The gravitomagnetic field lines of a rotating or spinning object are given in analytic form.Comment: 7 pages, 3 figures, Proc. Hyper Symposium, Paris 200

    The CFL phase and m_s: An effective field theory approach

    Full text link
    We study the phase diagram of dense quark matter with an emphasis on the role of the strange quark mass. Our approach is based on two effective field theories (EFTs). The first is an EFT that describes quark quasi-particles near the Fermi surface. This EFT is valid at energies small compared to the chemical potential. The second is an EFT for the Goldstone modes in the paired phase. We find that in response to a non-zero strange quark mass the CFL phase first undergoes a transition to a kaon condensed phase, and then to a gapless phase with a non-zero Goldstone boson current.Comment: 26 pages, to appear in ``Pairing in fermionic systems: Basic concepts and modern applications", Series on Advances in Quantum Many-Body Theory, Vol. 8, World Scientific Publishing, Singapor

    Instantons and the Large N_c Limit of QCD

    Get PDF
    We summarize our current understanding of instantons in the large N_c limit of QCD. We also present some recent results from simulations of the instanton liquid in QCD for N_c>3.Comment: 10 pages; talk given at the Workshop on the Phenomenology of Large N_C QCD, ASU (Jan. 2002), to be published in the proceeding
    corecore