7 research outputs found

    Cross-sectional study: prevalence of oedema disease Escherichia coli (EDEC) in weaned piglets in Germany at pen and farm levels

    Get PDF
    Background Escherichia coli bacteria capable of producing the toxin Stx2e and possessing F18-fimbriae (edema disease E. coli, EDEC) are considered causative agents of porcine oedema disease. This disease, which usually occurs in piglets shortly after weaning, has a high lethality in affected animals and can lead to high economic losses in piglet rearing. The aim of this cross-sectional field study was to determine the prevalence of EDEC in weaned piglets in Germany at pen and farm levels. Results Ninety-nine farms with unknown history of infections with shigatoxin-producing E. coli (STEC) and oedema disease were sampled. On each farm, up to five pens were selected for sampling (n = 481). The piglets in these pens were at an age 1–3 weeks after weaning. Single faecal samples (n = 2405) and boot swabs (n = 479) were collected from the floor. On 50 farms, cotton ropes were additionally used to collect oral fluid samples (n = 185) and rope wash out samples (n = 231) from the selected pens. All samples were analyzed by bacterial culture combined with a duplex PCR for the presence of the corresponding genes stx2e and fedA (major subunit protein of F18 fimbriae). In addition, whole DNA specimens extracted from boot swabs, oral fluid samples, and rope wash out samples were directly examined by duplex PCR for DNA of stx2e and fedA. A pen was classified as positive if at least one of the samples, regardless of the technique, yielded a positive result in the PCR, and farms were considered positive if at least one pen was classified as positive. Overall, genes stx2e and fedA were found simultaneously in 24.9% (95% CI 22.1–29.1%) of sampled pens and in 37.4% (95% CI 27.9–47.7%) of sampled farms. Regardless of the presence of F18-fimbriae, Escherichia coli encoding for Stx2e (STEC-2e) were found in 35.1% (95% CI 31.0–39.1%) of the pens and 53.5% (95% CI 44.4–63.6%) of the farms sampled. Conclusions Escherichia coli strains considered capable to cause oedema disease in swine (EDEC) are highly prevalent in the surveyed pig producing farms in Germany. Due to intermittent shedding of EDEC and a potentially low within-farm prevalence, we recommend a combination of different sampling techniques for EDEC monitoring at pen and farm levels. Further studies are needed to understand which STEC-2e strains really pose the risk of causing severe porcine disease

    Unraveling the Function of the Rhodospirillum rubrum Activator of Polyhydroxybutyrate (PHB) Degradation: the Activator Is a PHB-Granule-Bound Protein (Phasin)

    Full text link
    Efficient hydrolysis of native poly(3-hydroxybutyrate) (nPHB) granules in vitro by soluble PHB depolymerase of Rhodospirillum rubrum requires pretreatment of nPHB with an activator compound present in R. rubrum cells (J. M. Merrick and M. Doudoroff, J. Bacteriol. 88:60-71, 1964). Edman sequencing of the purified activator (17.4 kDa; matrix-assisted laser desorption ionization—time of flight mass spectrometry) revealed identity to a hypothetical protein deduced from a partially sequenced R. rubrum genome. The complete activator gene, apdA (activator of polymer degradation), was cloned from genomic DNA, expressed as a six-His-tagged protein in recombinant Escherichia coli (M(r), 18.3 × 10(3)), and purified. The effect of ApdA on PHB metabolism was studied in vitro and in vivo. In vitro, the activity of the activator could be replaced by trypsin, but recombinant ApdA itself had no protease activity. Comparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein patterns of trypsin- and ApdA-treated nPHB granules isolated from different PHB-accumulating bacteria showed that trypsin activated nPHB by removing proteins of the surface layer of nPHB regardless of the origin of nPHB, but ApdA bound to and interacted with the surface layer of nPHB in a nonproteolytic manner, thereby transforming nPHB into an activated form that was accessible to the depolymerase. In vivo, expression of ApdA in E. coli harboring the PHB biosynthetic genes, phaCBA, resulted in significant increases in the number and surface/volume ratio of accumulated PHB granules, which was comparable to the effect of phasin proteins, such as PhaP in Ralstonia eutropha. The amino acid sequence of ApdA was 55% identical to the amino acid sequence of Mms16, a magnetosome-associated protein in magnetotactic Magnetospirillum species. Mms16 was previously reported to be a GTPase with an essential function in magnetosome formation (Y. Okamura, H. Takeyama, and T. Matsunaga, J. Biol. Chem. 276:48183-48188, 2001). However, no GTPase activity of ApdA could be demonstrated. We obtained evidence that Mms16 of Magnetospirillum gryphiswaldense can functionally replace ApdA in R. rubrum. Fusions of apdA and mms16 to gfp or yfp were functionally expressed, and both fusions colocalized with PHB granules after conjugative transfer to R. rubrum. In conclusion, ApdA in vivo is a PHB-bound, phasin-like protein in R. rubrum. The function of Mms16 in magnetotactic bacteria requires further clarification

    Cross-sectional study: prevalence of oedema disease Escherichia coli (EDEC) in weaned piglets in Germany at pen and farm levels

    Full text link
    Abstract Background Escherichia coli bacteria capable of producing the toxin Stx2e and possessing F18-fimbriae (edema disease E. coli, EDEC) are considered causative agents of porcine oedema disease. This disease, which usually occurs in piglets shortly after weaning, has a high lethality in affected animals and can lead to high economic losses in piglet rearing. The aim of this cross-sectional field study was to determine the prevalence of EDEC in weaned piglets in Germany at pen and farm levels. Results Ninety-nine farms with unknown history of infections with shigatoxin-producing E. coli (STEC) and oedema disease were sampled. On each farm, up to five pens were selected for sampling (n = 481). The piglets in these pens were at an age 1–3 weeks after weaning. Single faecal samples (n = 2405) and boot swabs (n = 479) were collected from the floor. On 50 farms, cotton ropes were additionally used to collect oral fluid samples (n = 185) and rope wash out samples (n = 231) from the selected pens. All samples were analyzed by bacterial culture combined with a duplex PCR for the presence of the corresponding genes stx2e and fedA (major subunit protein of F18 fimbriae). In addition, whole DNA specimens extracted from boot swabs, oral fluid samples, and rope wash out samples were directly examined by duplex PCR for DNA of stx2e and fedA. A pen was classified as positive if at least one of the samples, regardless of the technique, yielded a positive result in the PCR, and farms were considered positive if at least one pen was classified as positive. Overall, genes stx2e and fedA were found simultaneously in 24.9% (95% CI 22.1–29.1%) of sampled pens and in 37.4% (95% CI 27.9–47.7%) of sampled farms. Regardless of the presence of F18-fimbriae, Escherichia coli encoding for Stx2e (STEC-2e) were found in 35.1% (95% CI 31.0–39.1%) of the pens and 53.5% (95% CI 44.4–63.6%) of the farms sampled. Conclusions Escherichia coli strains considered capable to cause oedema disease in swine (EDEC) are highly prevalent in the surveyed pig producing farms in Germany. Due to intermittent shedding of EDEC and a potentially low within-farm prevalence, we recommend a combination of different sampling techniques for EDEC monitoring at pen and farm levels. Further studies are needed to understand which STEC-2e strains really pose the risk of causing severe porcine disease

    Clinical and genetic characteristics of late-onset Huntington's disease

    Full text link
    Background: The frequency of late-onset Huntington's disease (>59 years) is assumed to be low and the clinical course milder. However, previous literature on late-onset disease is scarce and inconclusive. Objective: Our aim is to study clinical characteristics of late-onset compared to common-onset HD patients in a large cohort of HD patients from the Registry database. Methods: Participants with late- and common-onset (30–50 years)were compared for first clinical symptoms, disease progression, CAG repeat size and family history. Participants with a missing CAG repeat size, a repeat size of ≀35 or a UHDRS motor score of ≀5 were excluded. Results: Of 6007 eligible participants, 687 had late-onset (11.4%) and 3216 (53.5%) common-onset HD. Late-onset (n = 577) had significantly more gait and balance problems as first symptom compared to common-onset (n = 2408) (P <.001). Overall motor and cognitive performance (P <.001) were worse, however only disease motor progression was slower (coefficient, −0.58; SE 0.16; P <.001) compared to the common-onset group. Repeat size was significantly lower in the late-onset (n = 40.8; SD 1.6) compared to common-onset (n = 44.4; SD 2.8) (P <.001). Fewer late-onset patients (n = 451) had a positive family history compared to common-onset (n = 2940) (P <.001). Conclusions: Late-onset patients present more frequently with gait and balance problems as first symptom, and disease progression is not milder compared to common-onset HD patients apart from motor progression. The family history is likely to be negative, which might make diagnosing HD more difficult in this population. However, the balance and gait problems might be helpful in diagnosing HD in elderly patients

    Cognitive decline in Huntington's disease expansion gene carriers

    Full text link

    Literatur

    Full text link
    corecore