184 research outputs found
Wind farm facilities in Germany kill noctule bats from near and far
Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula). We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136) were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant noctule bats, considering the large geographical catchment areas of German wind turbines for this species
A Singular Perturbation Analysis for \\Unstable Systems with Convective Nonlinearity
We use a singular perturbation method to study the interface dynamics of a
non-conserved order parameter (NCOP) system, of the reaction-diffusion type,
for the case where an external bias field or convection is present. We find
that this method, developed by Kawasaki, Yalabik and Gunton for the
time-dependant Ginzburg-Landau equation and used successfully on other NCOP
systems, breaks down for our system when the strength of bias/convection gets
large enough.Comment: 5 pages, PostScript forma
Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences
We propose a fully automatic method for fitting a 3D morphable model to
single face images in arbitrary pose and lighting. Our approach relies on
geometric features (edges and landmarks) and, inspired by the iterated closest
point algorithm, is based on computing hard correspondences between model
vertices and edge pixels. We demonstrate that this is superior to previous work
that uses soft correspondences to form an edge-derived cost surface that is
minimised by nonlinear optimisation.Comment: To appear in ACCV 2016 Workshop on Facial Informatic
Phase ordering and shape deformation of two-phase membranes
Within a coupled-field Ginzburg-Landau model we study analytically phase
separation and accompanying shape deformation on a two-phase elastic membrane
in simple geometries such as cylinders, spheres and tori. Using an exact
periodic domain wall solution we solve for the shape and phase ordering field,
and estimate the degree of deformation of the membrane. The results are
pertinent to a preferential phase separation in regions of differing curvature
on a variety of vesicles.Comment: 4 pages, submitted to PR
Copula Eigenfaces with Attributes: Semiparametric Principal Component Analysis for a Combined Color, Shape and Attribute Model
Principal component analysis is a ubiquitous method in parametric appearance modeling for describing dependency and variance in datasets. The method requires the observed data to be Gaussian-distributed. We show that this requirement is not fulfilled in the context of analysis and synthesis of facial appearance. The model mismatch leads to unnatural artifacts which are severe to human perception. As a remedy, we use a semiparametric Gaussian copula model, where dependency and variance are modeled separately. This model enables us to use arbitrary Gaussian and non-Gaussian marginal distributions. Moreover, facial color, shape and continuous or categorical attributes can be analyzed in an unified way. Accounting for the joint dependency between all modalities leads to a more specific face model. In practice, the proposed model can enhance performance of principal component analysis in existing pipelines: The steps for analysis and synthesis can be implemented as convenient pre- and post-processing steps
Biochemistry Instructorsâ Views toward Developing and Assessing Visual Literacy in Their Courses
Biochemistry instructors are inundated with various representations from which to choose to depict biochemical phenomena. Because of the immense amount of visual know-how needed to be an expert biochemist in the 21st century, there have been calls for instructors to develop biochemistry studentsâ visual literacy. However, visual literacy has multiple aspects, and determining which area to develop can be quite daunting. Therefore, the goals of this study were to determine what visual literacy skills biochemistry instructors deem to be most important and how instructors develop and assess visual literacy skills in their biochemistry courses. In order to address these goals, a needs assessment was administered to a national sample of biochemistry faculty at four-year colleges and universities. Based on the results of the survey, a cluster analysis was conducted to group instructors into categories based on how they intended to develop visual literacy in their courses. A misalignment was found between the visual literacy skills that were most important and how instructors developed visual literacy. In addition, the majority of instructors assumed these skills on assessments rather than explicitly testing them. Implications focus on the need for better measures to assess visual literacy skills directly
A Closest Point Proposal for MCMC-based Probabilistic Surface Registration
We propose to view non-rigid surface registration as a probabilistic
inference problem. Given a target surface, we estimate the posterior
distribution of surface registrations. We demonstrate how the posterior
distribution can be used to build shape models that generalize better and show
how to visualize the uncertainty in the established correspondence.
Furthermore, in a reconstruction task, we show how to estimate the posterior
distribution of missing data without assuming a fixed point-to-point
correspondence.
We introduce the closest-point proposal for the Metropolis-Hastings
algorithm. Our proposal overcomes the limitation of slow convergence compared
to a random-walk strategy. As the algorithm decouples inference from modeling
the posterior using a propose-and-verify scheme, we show how to choose
different distance measures for the likelihood model.
All presented results are fully reproducible using publicly available data
and our open-source implementation of the registration framework
Influence of the addition of LPG-reformate and H2 on an engine dually fuelled with LPGâdiesel, âRME and âGTL Fuels
AbstractDual fuel compression ignition engine has been proposed as one approach to reduce diesel engine regulated emissions (NOX and Soot) and to also allow the utilisation of other non-traditional fuels in transportation, in order to improve fuel security and CO2 emissions. In an attempt to improve the combustion characteristics of the LPGâdiesel dual fuelled engine the influence of the (a) hydrogen and reformate (H2 and CO) additions and (b) properties of the in-cylinder injected diesel fuel, in this case diesel, biodiesel and synthetic diesel fuel were investigated.Improvements on engine thermal efficiency and HC (including particular HC species) emissions with the reformate and further improvements on CO, soot and particulate matter with hydrogen with respect to LPGâdiesel dual fuel combustion were obtained. However, an increase in NOX was obtained due to the high in-cylinder temperature as a result of the shorter advanced premixed combustion. Moreover, the RMEâs oxygen content, different injection (i.e. different high bulk modulus) and combustion characteristics as a result of its properties modified the combustion process and hence produced even lower HC, CO, soot and PM emissions. On the other hand, the lower density of GTL has changed the diesel fuel injection and combustion characteristics in dual fuelling mode which resulted in the increased regulated (HC and CO) and unregulated emissions. However, LPGâGTL dual fuelling with reformate and H2 addition showed better smoke-NOX trade-off compared to that of ULSD and RME
Recommended from our members
Reply to: New Meta- and Mega-analyses of Magnetic Resonance Imaging Findings in Schizophrenia: Do They Really Increase Our Knowledge About the Nature of the Disease Process?
This work was supported by National Institute of Biomedical Imaging and Bioengineering Grant No. U54EB020403 (to the ENIGMA consortium)
Effect of probe energy and competing pathways on time-resolved photoelectron spectroscopy signals: ring-opening reaction of 1,3-cyclohexadiene
The ring-opening dynamics of 1,3-cyclohexadiene (CHD) following UV excitation is studied using a model based on quantum molecular dynamics simulations with the ab-initio multiconfigurational Ehrenfest (AI-MCE) method coupled to the Dyson orbital approach for photoionisation cross sections. Time-dependent photoelectron spectra are calculated for probe photon energies in the range 2-15 eV. The calculations demonstrate the value of universal high-energy probes, capableof tracking the full photochemical dynamics of the molecule, as well as the benefit of more selective, lower-energy probes. The predicted signal, especially with the universal probes, becomes highly convoluted due to the contributions from multiple reaction paths, rendering interpretationdifficult unless complementary measurements and theoretical comparisons are available
- âŠ