11,481 research outputs found

    OPE analysis of the nucleon scattering tensor including weak interaction and finite mass effects

    Get PDF
    We perform a systematic operator product expansion of the most general form of the nucleon scattering tensor WμνW_{\mu \nu} including electro-magnetic and weak interaction processes. Finite quark masses are taken into account and a number of higher-twist corrections are included. In this way we derive relations between the lowest moments of all 14 structure functions and matrix elements of local operators. Besides reproducing well-known results, new sum rules for parity-violating polarized structure functions and new mass correction terms are obtained.Comment: 50 pages, additional references adde

    On Advanced Mobility Concepts for Intelligent Planetary Surface Exploration

    Get PDF
    Surface exploration by wheeled rovers on Earth's Moon (the two Lunokhods) and Mars (Nasa's Sojourner and the two MERs) have been followed since many years already very suc-cessfully, specifically concerning operations over long time. However, despite of this success, the explored surface area was very small, having in mind a total driving distance of about 8 km (Spirit) and 21 km (Opportunity) over 6 years of operation. Moreover, ESA will send its ExoMars rover in 2018 to Mars, and NASA its MSL rover probably this year. However, all these rovers are lacking sufficient on-board intelligence in order to overcome longer dis-tances, driving much faster and deciding autonomously on path planning for the best trajec-tory to follow. In order to increase the scientific output of a rover mission it seems very nec-essary to explore much larger surface areas reliably in much less time. This is the main driver for a robotics institute to combine mechatronics functionalities to develop an intelligent mo-bile wheeled rover with four or six wheels, and having specific kinematics and locomotion suspension depending on the operational terrain of the rover to operate. DLR's Robotics and Mechatronics Center has a long tradition in developing advanced components in the field of light-weight motion actuation, intelligent and soft manipulation and skilled hands and tools, perception and cognition, and in increasing the autonomy of any kind of mechatronic systems. The whole design is supported and is based upon detailed modeling, optimization, and simula-tion tasks. We have developed efficient software tools to simulate the rover driveability per-formance on various terrain characteristics such as soft sandy and hard rocky terrains as well as on inclined planes, where wheel and grouser geometry plays a dominant role. Moreover, rover optimization is performed to support the best engineering intuitions, that will optimize structural and geometric parameters, compare various kinematics suspension concepts, and make use of realistic cost functions like mass and consumed energy minimization, static sta-bility, and more. For self-localization and safe navigation through unknown terrain we make use of fast 3D stereo algorithms that were successfully used e.g. in unmanned air vehicle ap-plications and on terrestrial mobile systems. The advanced rover design approach is applica-ble for lunar as well as Martian surface exploration purposes. A first mobility concept ap-proach for a lunar vehicle will be presented

    Lattice QCD study of the Boer-Mulders effect in a pion

    Get PDF
    The three-dimensional momenta of quarks inside a hadron are encoded in transverse momentum-dependent parton distribution functions (TMDs). This work presents an exploratory lattice QCD study of a TMD observable in the pion describing the Boer-Mulders effect, which is related to polarized quark transverse momentum in an unpolarized hadron. Particular emphasis is placed on the behavior as a function of a Collins-Soper evolution parameter quantifying the relative rapidity of the struck quark and the initial hadron, e.g., in a semi-inclusive deep inelastic scattering (SIDIS) process. The lattice calculation, performed at the pion mass m_pi = 518 MeV, utilizes a definition of TMDs via hadronic matrix elements of a quark bilocal operator with a staple-shaped gauge connection; in this context, the evolution parameter is related to the staple direction. By parametrizing the aforementioned matrix elements in terms of invariant amplitudes, the problem can be cast in a Lorentz frame suited for the lattice calculation. In contrast to an earlier nucleon study, due to the lower mass of the pion, the calculated data enable quantitative statements about the physically interesting limit of large relative rapidity. In passing, the similarity between the Boer-Mulders effects extracted in the pion and the nucleon is noted.Comment: 16 pages, 9 figures, 3 table

    Diffractive charged meson pair production

    Full text link
    We investigate the possibility to measure the nonforward gluon distribution function by means of diffractively produced \pi^+\pi^- and K^+K^- pairs in polarized lepton nucleon scattering. The resulting cross sections are small and are dominated by the gluonic contribution. We find relatively large spin asymmetries, both for \pi^+\pi^- and for K^+K^- pairs.Comment: 15 pages, version with changed kinematical cuts, to be pubished in Phys.Lett.

    Sivers and Boer-Mulders observables from lattice QCD

    Full text link
    We present a first calculation of transverse momentum dependent nucleon observables in dynamical lattice QCD employing non-local operators with staple-shaped, "process-dependent" Wilson lines. The use of staple-shaped Wilson lines allows us to link lattice simulations to TMD effects determined from experiment, and in particular to access non-universal, naively time-reversal odd TMD observables. We present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the generalized tensor charge and a generalized transverse shift related to the worm gear function g_1T. We emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution parameter. Our numerical calculations use an n_f = 2+1 mixed action scheme with domain wall valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.Comment: 25 pages, 13 figures; version accepted by journal. Contains additional section explaining and summarizing the methodolog

    The mutualistic fungus Piriformospora indica colonizes Arabidopsis roots by inducing an endoplasmic reticulum stress-triggered caspase-dependent cell death

    Get PDF
    In Arabidopsis thaliana roots, the mutualistic fungus Piriformospora indica initially colonizes living cells, which die as the colonization proceeds. We aimed to clarify the molecular basis of this colonization-associated cell death. Our cytological analyses revealed endoplasmic reticulum (ER) swelling and vacuolar collapse in invaded cells, indicative of ER stress and cell death during root colonization. Consistent with this, P. indica–colonized plants were hypersensitive to the ER stress inducer tunicamycin. By clear contrast, ER stress sensors bZIP60 and bZIP28 as well as canonical markers for the ER stress response pathway, termed the unfolded protein response (UPR), were suppressed at the same time. Arabidopsis mutants compromised in caspase 1–like activity, mediated by cell death–regulating vacuolar processing enzymes (VPEs), showed reduced colonization and decreased cell death incidence. We propose a previously unreported microbial invasion strategy during which P. indica induces ER stress but inhibits the adaptive UPR. This disturbance results in a VPE/caspase 1–like-mediated cell death, which is required for the establishment of the symbiosis. Our results suggest the presence of an at least partially conserved ER stress–induced caspase-dependent cell death pathway in plants as has been reported for metazoans

    Glucocorticoids for human skin: New aspects of the mechanism of action

    Get PDF
    Topical glucocorticoids have always been considered first-line drugs for inflammatory diseases of the skin and bronchial system. Applied systemically, glucocorticoids are used for severe inflammatory and immunological diseases and the inhibition of transplant rejection. Owing to the progress in molecular pharmacology, the knowledge of the mechanism of action has increased during the last years. Besides distinct genomic targets, which are due to the activation of specific cytoplasmatic receptors resulting in the (trans-) activation or (trans-) repression of target genes, there are non-genomic effects on the basis of the interference with membrane-associated receptors as well as with membrane lipids. In fact, various glucocorticoids appear to differ with respect to the relative influence on these targets. Thus, the extended knowledge of glucocorticoid-induced cellular signalling should allow the design and development of even more specifically acting drugs-as it has been obtained with other steroids, e.g. estrogens for osteoporosis prevention. Copyright (C) 2005 S. Karger AG, Basel

    Superdense Matter

    Get PDF
    We review recent work on the phase structure of QCD at very high baryon density. We introduce the phenomenon of color superconductivity and discuss the use of weak coupling methods. We study the phase structure as a function of the number of flavors and their masses. We also introduce effective theories that describe low energy excitations at high baryon density. Finally, we study the possibility of kaon condensation at very large baryon density.Comment: 13 pages, talk at ICPAQGP, Jaipur, India, Nov. 26-30, 2001; to appear in the proceeding
    corecore