1,939 research outputs found

    Effect of Intraduodenal Bile and Na-Taurodeoxycholate on Exocrine Pancreatic Secretion and on Plasma Levels of Secretin, Pancreatic Polypeptide, and Gastrin in Man

    Get PDF
    The effect of intraduodenally administered cattle bile (CB) and Na-taurodeoxycholate (TDC) on basal pancreatic secretion and plasma levels of secretin, pancreatic polypeptide (PP), and gastrin were investigated on two separate days in 10 fasting volunteers. Doses of 2-6 g CB and 20&600 mg TDC were given intraduodenally at 65-min intervals. Volume, bicarbonate, lipase, trypsin, amylase, and bilirubin were measured in 10-min fractions of duodenal juice, and GI peptides determined by radioimmunoassay. CB and TDC enhanced significantly and dose-dependently volume, bicarbonate and enzyme secretion, and plasma secretin and PP levels. In contrast, plasma gastrin showed only a marginal increase. We conclude that the hydrokinetic effect of intraduodenal CB and TDC is at least partially mediated by secretin. Gastrin could be ruled out as a mediator of the ecbolic effect, whereas other GI peptides, primarily CCK, and/or neural mechanisms must be considered possible mediators. Both pathways may also play a role in the PP release

    Circadian rhythm of hepatic cytosolic and nuclear estrogen receptors

    Get PDF
    The distribution of estrogen receptor between the cytosolic and nuclear compartments were evaluated in liver of male rats to determine whether a circadian rhythm exists. Cytosolic receptor reached a maximum level at 400 hours and a minimum at 2000 and 2400 hr. Nuclear receptor reached a maximum level at 800 hr and was lowest at 1600 and 2000 hr. Serum estradiol levels were also highest at 800 hr and lowest at 1600 hr. The variations in cytosolic and nuclear receptors are not reciprocal; in fact, the overall content of receptor in the liver is not constant and also displays a circadian rhythm. © 1986 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    Objective responses to first-line neoadjuvant carboplatin-paclitaxel regimens for ovarian, fallopian tube, or primary peritoneal carcinoma (ICON8): post-hoc exploratory analysis of a randomised, phase 3 trial

    Get PDF
    Background: Platinum-based neoadjuvant chemotherapy followed by delayed primary surgery (DPS) is an established strategy for women with newly diagnosed, advanced-stage epithelial ovarian cancer. Although this therapeutic approach has been validated in randomised, phase 3 trials, evaluation of response to neoadjuvant chemotherapy using Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST), and cancer antigen 125 (CA125) has not been reported. We describe RECIST and Gynecologic Cancer InterGroup (GCIG) CA125 responses in patients receiving platinum-based neoadjuvant chemotherapy followed by DPS in the ICON8 trial. / Methods: ICON8 was an international, multicentre, randomised, phase 3 trial done across 117 hospitals in the UK, Australia, New Zealand, Mexico, South Korea, and Ireland. The trial included women aged 18 years or older with an Eastern Cooperative Oncology Group performance status of 0–2, life expectancy of more than 12 weeks, and newly diagnosed International Federation of Gynecology and Obstetrics (FIGO; 1988) stage IC–IIA high-grade serous, clear cell, or any poorly differentiated or grade 3 histological subtype, or any FIGO (1988) stage IIB–IV epithelial cancer of the ovary, fallopian tube, or primary peritoneum. Patients were randomly assigned (1:1:1) to receive intravenous carboplatin (area under the curve [AUC]5 or AUC6) and intravenous paclitaxel (175 mg/m2 by body surface area) on day 1 of every 21-day cycle (control group; group 1); intravenous carboplatin (AUC5 or AUC6) on day 1 and intravenous dose-fractionated paclitaxel (80 mg/m2 by body surface area) on days 1, 8, and 15 of every 21-day cycle (group 2); or intravenous dose-fractionated carboplatin (AUC2) and intravenous dose-fractionated paclitaxel (80 mg/m2 by body surface area) on days 1, 8, and 15 of every 21-day cycle (group 3). The maximum number of cycles of chemotherapy permitted was six. Randomisation was done with a minimisation method, and patients were stratified according to GCIG group, disease stage, and timing and outcome of cytoreductive surgery. Patients and clinicians were not masked to group allocation. The scheduling of surgery and use of neoadjuvant chemotherapy were determined by local multidisciplinary case review. In this post-hoc exploratory analysis of ICON8, progression-free survival was analysed using the landmark method and defined as the time interval between the date of pre-surgical planning radiological tumour assessment to the date of investigator-assessed clinical or radiological progression or death, whichever occurred first. This definition is different from the intention-to-treat primary progression-free survival analysis of ICON8, which defined progression-free survival as the time from randomisation to the date of first clinical or radiological progression or death, whichever occurred first. We also compared the extent of surgical cytoreduction with RECIST and GCIG CA125 responses. This post-hoc exploratory analysis includes only women recruited to ICON8 who were planned for neoadjuvant chemotherapy followed by DPS and had RECIST and/or GCIG CA125-evaluable disease. ICON8 is closed for enrolment and follow-up, and registered with ClinicalTrials.gov, NCT01654146. / Findings: Between June 6, 2011, and Nov 28, 2014, 1566 women were enrolled in ICON8, of whom 779 (50%) were planned for neoadjuvant chemotherapy followed by DPS. Median follow-up was 29·5 months (IQR 15·6–54·3) for the neoadjuvant chemotherapy followed by DPS population. Of 564 women who had RECIST-evaluable disease at trial entry, 348 (62%) had a complete or partial response. Of 727 women who were evaluable by GCIG CA125 criteria at the time of diagnosis, 610 (84%) had a CA125 response. Median progression-free survival was 14·4 months (95% CI 9·2–28·0; 297 events) for patients with a RECIST complete or partial response and 13·3 months (8·1–20·1; 171 events) for those with RECIST stable disease. Median progression-free survival for women with a GCIG CA125 response was 13·8 months (95% CI 8·8–23·4; 544 events) and 9·7 months (5·8–14·5; 111 events) for those without a GCIG CA125 response. Complete cytoreduction (R0) was achieved in 187 (56%) of 335 women with a RECIST complete or partial response and 73 (42%) of 172 women with RECIST stable disease. Complete cytoreduction was achieved in 290 (50%) of 576 women with a GCIG CA125 response and 30 (30%) of 101 women without a GCIG CA125 response. / Interpretation: The RECIST-defined radiological response rate was lower than that frequently quoted to patients in the clinic. RECIST and GCIG CA125 responses to neoadjuvant chemotherapy for epithelial ovarian cancer should not be used as individual predictive markers to stratify patients who are likely to benefit from DPS, but instead used in conjunction with the patient's clinical capacity to undergo cytoreductive surgery. A patient should not be denied surgery based solely on the lack of a RECIST or GCIG CA125 response. / Funding: Cancer Research UK, UK Medical Research Council, Health Research Board in Ireland, Irish Cancer Society, and Cancer Australia

    Treatment of advanced pancreatic cancer with the long-acting somatostatin analogue lanreotide: in vitro and in vivo results

    Get PDF
    Fourteen patients with metastatic pancreatic adenocarcinoma were treated with the long-acting somatostatin (SST) analogue lanreotide. No objective response was obtained, and the median survival was 4 months (range 1.8–7 months). Pancreatic cancer could not be visualized by means of SST-receptor (R) scintigraphy in our patients. In vitro data also demonstrated absence of SSTR2 expression, suggesting pancreatic cancer not to be a potential target for treatment with SST analogues. © 1999 Cancer Research Campaig

    Weekly dose-dense chemotherapy in first-line epithelial ovarian, fallopian tube, or primary peritoneal cancer treatment (ICON8): overall survival results from an open-label, randomised, controlled, phase 3 trial

    Get PDF
    BACKGROUND: Standard-of-care first-line chemotherapy for epithelial ovarian cancer is carboplatin and paclitaxel administered once every 3 weeks. The JGOG 3016 trial reported significant improvement in progression-free and overall survival with dose-dense weekly paclitaxel and 3-weekly (ie, once every 3 weeks) carboplatin. However, this benefit was not observed in the previously reported progression-free survival results of ICON8. Here, we present the final coprimary outcomes of overall survival and updated progression-free survival analyses of ICON8. METHODS: In this open-label, randomised, controlled, phase 3 trial (ICON8), women aged 18 years or older with newly diagnosed stage IC-IV epithelial ovarian, primary peritoneal, or fallopian tube carcinoma (here collectively termed ovarian cancer, as defined by International Federation of Gynecology and Obstetrics [FIGO] 1988 criteria) and an Eastern Cooperative Oncology Group performance status of 0-2 were recruited from 117 hospitals with oncology departments in the UK, Australia and New Zealand, Mexico, South Korea, and Ireland. Patients could enter the trial after immediate primary surgery (IPS) or with planned delayed primary surgery (DPS) during chemotherapy, or could have no planned surgery. Participants were randomly assigned (1:1:1), using the Medical Research Council Clinical Trials Unit at University College London randomisation line with stratification by Gynecologic Cancer Intergroup group, FIGO disease stage, and outcome and timing of surgery, to either 3-weekly carboplatin area under the curve (AUC)5 or AUC6 and 3-weekly paclitaxel 175 mg/m2 (control; group 1), 3-weekly carboplatin AUC5 or AUC6 and weekly paclitaxel 80 mg/m2 (group 2), or weekly carboplatin AUC2 and weekly paclitaxel 80 mg/m2 (group 3), all administered via intravenous infusion for a total of six 21-day cycles. Coprimary outcomes were progression-free survival and overall survival, with comparisons done between group 2 and group 1, and group 3 and group 1, in the intention-to-treat population. Safety was assessed in all patients who started at least one chemotherapy cycle. The trial is registered on ClinicalTrials.gov, NCT01654146, and ISRCTN registry, ISRCTN10356387, and is closed to accrual. FINDINGS: Between June 6, 2011, and Nov 28, 2014, 1566 patients were randomly assigned to group 1 (n=522), group 2 (n=523), or group 3 (n=521). The median age was 62 years (IQR 54-68), 1073 (69%) of 1566 patients had high-grade serous carcinoma, 1119 (71%) had stage IIIC-IV disease, and 745 (48%) had IPS. As of data cutoff (March 31, 2020), with a median follow-up of 69 months (IQR 61-75), no significant difference in overall survival was observed in either comparison: median overall survival of 47·4 months (95% CI 43·1-54·8) in group 1, 54·8 months (46·6-61·6) in group 2, and 53·4 months (49·2-59·6) in group 3 (group 2 vs group 1: hazard ratio 0·87 [97·5% CI 0·73-1·05]; group 3 vs group 1: 0·91 [0·76-1·09]). No significant difference was observed for progression-free survival in either comparison and evidence of non-proportional hazards was seen (p=0·037), with restricted mean survival time of 23·9 months (97·5% CI 22·1-25·6) in group 1, 25·3 months (23·6-27·1) in group 2, and 24·8 months (23·0-26·5) in group 3. The most common grade 3-4 adverse events were reduced neutrophil count (78 [15%] of 511 patients in group 1, 183 [36%] of 514 in group 2, and 154 [30%] of 513 in group 3), reduced white blood cell count (22 [4%] in group 1, 80 [16%] in group 2, and 71 [14%] in group 3), and anaemia (26 [5%] in group 1, 66 [13%] in group 2, and 24 [5%] in group 3). No new serious adverse events were reported. Seven treatment-related deaths were reported (two in group 1, four in group 2, and one in group 3). INTERPRETATION: In our cohort of predominantly European women with epithelial ovarian cancer, we found that first-line weekly dose-dense chemotherapy did not improve overall or progression-free survival compared with standard 3-weekly chemotherapy and should not be used as part of standard multimodality front-line therapy in this patient group. FUNDING: Cancer Research UK, Medical Research Council, Health Research Board in Ireland, Irish Cancer Society, and Cancer Australia

    Therapy of human non-small-cell lung carcinoma using antibody targeting of a modified superantigen

    Get PDF
    Superantigens activate T-cells by linking the T-cell receptor to MHC class II on antigen-presenting cells, and novel reactivity can be introduced by fusing the superantigen to a targeting molecule. Thus, an antibody-targeted superantigen, which activates T cells to destroy tumour cells, might be used as cancer therapy. A suitable target is the 5T4 oncofetal antigen, which is expressed on many carcinomas. We constructed a fusion protein from a Fab of a monoclonal antibody recognizing the 5T4 antigen, and an engineered superantigen. The recombinant product 5T4FabV13-SEAD227A bound the 5T4 antigen expressed on the human non-small-cell lung cancer cell line Calu-1 with a Kd of 1.2 nM while the substitution of Asp227 to Ala in the superantigen moiety reduced binding activity to MHC class II. 5T4FabV13-SEAD227A tumour reactivity was demonstrated in 7/7 NSCLC samples by immunohistochemistry, while normal tissue reactivity was low to moderate. 5T4FabV13-SEAD227A induced significant T-cell-dependent in vitro killing of sensitive 5T4 bearing Calu-1 cells, with maximum lysis at 10−10M, while the capacity to lyse MHC class II expressing cells was approximately 1000 times less effective. Immunotherapy of 5T4FabV13-SEAD227A against human NSCLC was investigated in SCID mice reconstituted with human peripheral blood mononuclear cells. Mice carrying intreperitoneally growing Calu-1 cells showed significant reduction in tumour mass and number after intravenous therapy with 5T4FabV13-SEAD227A. Thus, 5T4FabV13-SEAD227A has highly attractive properties for therapy of human NSCLC. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Time to reach steady state and prediction of steady-state concentrations for drugs obeying Michaelis-Menten elimination kinetics

    Full text link
    Using a numerical integration method, concentration-time data were simulated using the one-compartment open model both with bolus intravenous administration and oral administration (first-order absorption) after multiple doses administered at constant time intervals and for each model for five different doses. Constants used produced data very similar to those which have been reported for phenytoin in the literature. In the simulation of oral data, sufficient concentrations were recorded to allow estimation of the maximum (C n max ), average (¯) C n , and minimum (C n min ) concentrations during each dosage interval, but for the intravenous data only C n max and C n min values were recorded. The approach to steady state was monoexponential for low doses and biexponential for higher doses. The half-life of the final first-order approach to the steady-state concentration was approximately linearly related to the final steady-state concentration. For the intravenous data the number of doses required to reach 95% of C ss min was a linear function of 0.95 C ss min . A simple difference plot allows any given steady-state concentration of the three to be estimated from non-steady-state concentrations. When C n min values are measured, as in therapeutic drug monitoring, the fitting of C ss min vs. dose rate (D/τ) data leads to operationally useful parameters, V m app and K m app , which are not the true kinetic parameters, V m and K m , whereas fitting of ¯C ss vs d/τ data does lead to estimation of V m and K m .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45075/1/10928_2005_Article_BF01312263.pd
    corecore