133 research outputs found

    Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains

    Get PDF
    Abstract Background: Cryptococcal infections, besides being a problem for immunocompromised patients, are occasionally being a problem for immunocompetent patients. In addition, the lower susceptibility of this yeast to azoles is a growing problem in health care. To date, there are very few molecules with any activity towards Cryptococcus neoformans, leading to heightened interest in finding new alternatives or adjuvants to conventional drugs for the treatment of mycosis caused by this yeast. Since the essential oils (EOs) are considered as a potential rich source of bioactive antimicrobial compounds, we evaluated the antifungal activity of Origanum vulgare (oregano), Pinus sylvestris (pine), and Thymus vulgaris (thyme red) EOs, and their components (\u3b1-pinene, carvacrol, thymol) compared with fluconazole, itraconazole, and voriconazole, against C.neoformans clinical strains. Then, we investigated the effect of EOs and components in combination with itraconazole. Methods: EO composition was analysed by Gas chromatography-mass spectrometry (GC-MS). A broth microdilution method was used to evaluate the susceptibility of C.neoformans to azoles, EOs and components. Checkerboard tests, isobolograms and time-kill assays were carried out for combination studies. Results: C.neoformans isolates were susceptible to azoles, while one C.neoformans exhibited a reduced susceptibility to all test edazole drugs. All EOs exerted a good inhibitory activity against all C.neoformans strains. Pine EO was the most effective. Among components, thymol exerted the most remark able activity. By checkerboard testing and isobolographic analysis, combinations of itraconazole with oregano, pine, or thyme EOs, and carvacrol were found to be synergistic (FICI 64 0.5) against azole susceptible C.neoformans. Regarding the azole not susceptible C.neoformans strain, the synergistic effect with itraconazole was observed with thyme EO (chemotype: thymol 26.52%; carvacrol 7.85%), and carvacrol. Time-kill assays confirmed the synergistic effects of itraconazole and oregano or thyme EO against azole susceptible C.neoformans. Binary mixtures of itraconazole/thyme EO or carvacrol yielded additive effects on the azole not susceptible C.neoformans. Conclusions: Our findings highlight the potential effectiveness of thyme, oregano EOs, and carvacrol as natural and cost-effective adjuvants when used in combination with itraconazole. Identification of EOs exerting these effects could be one of the feasible ways to overcome drug resistance, reducing drug concentration and side effects

    Candida albicans infections in renal transplant recipients: effect of caspofungin on polymorphonuclear cells.

    Get PDF
    This study aimed to compare the caspofungin immunomodulating activities against Candida albicans on polymorphonuclear cells (PMNs) from renal transplant recipients (RTRs) and healthy subjects (HSs). RTR PMNs showed a significantly reduced fungicidal activity compared with that of HS PMNs. Addition of caspofungin to RTR PMNs significantly potentiated the yeast intracellular killing rate, achieving values similar to those observed for HS PMNs. These data show that caspofungin is suitable for invasive candidiasis treatment in patients with immune system-impaired components
    corecore