2,865 research outputs found
Industry/government seminar on Large Space systems technology: Executive summary
The critical technology developments which the participating experts recommend as being required to support the early generation large space systems envisioned as space missions during the years 1985-2000 are summarized
state generation of three Josephson qubits in presence of bosonic baths
We analyze an entangling protocol to generate tripartite
Greenberger-Horne-Zeilinger states in a system consisting of three
superconducting qubits with pairwise coupling. The dynamics of the open quantum
system is investigated by taking into account the interaction of each qubit
with an independent bosonic bath with an ohmic spectral structure. To this end
a microscopic master equation is constructed and exactly solved. We find that
the protocol here discussed is stable against decoherence and dissipation due
to the presence of the external baths.Comment: 16 pages and 4 figure
Holonomy and submanifold geometry
We survey applications of holonomic methods to the study of submanifold geometry, showing the consequences of some sort of extrinsic version of de Rham decomposition and Berger's Theorem, the so-called Normal Holonomy Theorem. At the same time, from geometric methods in submanifold theory we sketch very strong applications to the holonomy of Lorentzian manifolds. Moreover we give a conceptual modern proof of a result of Kostant for homogeneous space
THEORY OF HYPERSONIC LAMINAR STAGNATION REGION HEAT TRANSFER IN DISSOCIATING GASES
Thermochemical effects of foreign planetary atmospheres upon laminar heat transfer in hypersonic stagnation region - gas dynamic
Dissipation and entanglement dynamics for two interacting qubits coupled to independent reservoirs
We derive the master equation of a system of two coupled qubits by taking
into account their interaction with two independent bosonic baths. Important
features of the dynamics are brought to light, such as the structure of the
stationary state at general temperatures and the behaviour of the entanglement
at zero temperature, showing the phenomena of sudden death and sudden birth as
well as the presence of stationary entanglement for long times. The model here
presented is quite versatile and can be of interest in the study of both
Josephson junction architectures and cavity-QED.Comment: 14 pages, 3 figures, submitted to Journal of Physics A: Mathematical
and Theoretica
Population trapping due to cavity losses
In population trapping the occupation of a decaying quantum level keeps a
constant non-zero value. We show that an atom-cavity system interacting with an
environment characterized by a non-flat spectrum, in the non-Markovian limit,
exhibits such a behavior, effectively realizing the preservation of
nonclassical states against dissipation. Our results allow to understand the
role of cavity losses in hybrid solid state systems and pave the way to the
proper description of leakage in the recently developed cavity quantum
electrodynamic systems.Comment: 4 pages, 3 figures, version accepted for publication on Phys. Rev.
Polar Actions on Berger Spheres
The object of this article is to study a torus action on a so-called Berger sphere. We also make some comments on polar actions on naturally reductive homogeneous spaces. Finally, we prove a rigidity-type theorem for Riemannian manifolds carrying a polar action with a fix point
- …