371 research outputs found

    Hybrid Lattice Boltzmann/Finite Difference simulations of viscoelastic multicomponent flows in confined geometries

    Get PDF
    We propose numerical simulations of viscoelastic fluids based on a hybrid algorithm combining Lattice-Boltzmann models (LBM) and Finite Differences (FD) schemes, the former used to model the macroscopic hydrodynamic equations, and the latter used to model the polymer dynamics. The kinetics of the polymers is introduced using constitutive equations for viscoelastic fluids with finitely extensible non-linear elastic dumbbells with Peterlin's closure (FENE-P). The numerical model is first benchmarked by characterizing the rheological behaviour of dilute homogeneous solutions in various configurations, including steady shear, elongational flows, transient shear and oscillatory flows. As an upgrade of complexity, we study the model in presence of non-ideal multicomponent interfaces, where immiscibility is introduced in the LBM description using the "Shan-Chen" model. The problem of a confined viscoelastic (Newtonian) droplet in a Newtonian (viscoelastic) matrix under simple shear is investigated and numerical results are compared with the predictions of various theoretical models. The proposed numerical simulations explore problems where the capabilities of LBM were never quantified before.Comment: 32 Pages, 11 Figure

    On the impact of controlled wall roughness shape on the flow of a soft-material

    Full text link
    We explore the impact of geometrical corrugations on the near-wall flow properties of a soft-material driven in a confined rough microchannel. By means of numerical simulations, we perform a quantitative analysis of the relation between the flow rate Ί\Phi and the wall stress σw\sigma_w for a number of setups, by changing both the roughness values as well as the roughness shape. Roughness suppresses the flow, with the existence of a characteristic value of σw\sigma_w at which flow sets in. Just above the onset of flow, we quantitatively analyze the relation between Ί\Phi and σw\sigma_w. While for smooth walls a linear dependency is observed, steeper behaviours are found to set in by increasing wall roughness. The variation of the steepness, in turn, depends on the shape of the wall roughness, wherein gentle steepness changes are promoted by a variable space localization of the roughness

    Internal dynamics and activated processes in Soft-Glassy materials

    Get PDF
    Plastic rearrangements play a crucial role in the characterization of soft-glassy materials, such as emulsions and foams. Based on numerical simulations of soft-glassy systems, we study the dynamics of plastic rearrangements at the hydrodynamic scales where thermal fluctuations can be neglected. Plastic rearrangements require an energy input, which can be either provided by external sources, or made available through time evolution in the coarsening dynamics, in which the total interfacial area decreases as a consequence of the slow evolution of the dispersed phase from smaller to large droplets/bubbles. We first demonstrate that our hydrodynamic model can quantitatively reproduce such coarsening dynamics. Then, considering periodically oscillating strains, we characterize the number of plastic rearrangements as a function of the external energy-supply, and show that they can be regarded as activated processes induced by a suitable "noise" effect. Here we use the word noise in a broad sense, referring to the internal non-equilibrium dynamics triggered by spatial random heterogeneities and coarsening. Finally, by exploring the interplay between the internal characteristic time-scale of the coarsening dynamics and the external time-scale associated with the imposed oscillating strain, we show that the system exhibits the phenomenon of stochastic resonance, thereby providing further credit to the mechanical activation scenario.Comment: 21 Pages, 9 figure

    Inter-species variation in the oligomeric states of the higher plant Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase

    Get PDF
    In darkened leaves the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form a regulatory multi-enzyme complex with the small chloroplast protein CP12. GAPDH also forms a high molecular weight regulatory mono-enzyme complex. Given that there are different reports as to the number and subunit composition of these complexes and that enzyme regulatory mechanisms are known to vary between species, it was reasoned that protein-protein interactions may also vary between species. Here, this variation is investigated. This study shows that two different tetramers of GAPDH (an A2B2 heterotetramer and an A4 homotetramer) have the capacity to form part of the PRK/GAPDH/CP12 complex. The role of the PRK/GAPDH/CP12 complex is not simply to regulate the 'non-regulatory' A4 GAPDH tetramer. This study also demonstrates that the abundance and nature of PRK/GAPDH/CP12 interactions are not equal in all species and that whilst NAD enhances complex formation in some species, this is not sufficient for complex formation in others. Furthermore, it is shown that the GAPDH mono-enzyme complex is more abundant as a 2(A2B2) complex, rather than the larger 4(A2B2) complex. This smaller complex is sensitive to cellular metabolites indicating that it is an important regulatory isoform of GAPDH. This comparative study has highlighted considerable heterogeneity in PRK and GAPDH protein interactions between closely related species and the possible underlying physiological basis for this is discussed. © 2011 The Author(s)

    Occurrence of different Canine distemper virus lineages in Italian dogs

    Get PDF
    This study describes the sequence analysis of the H gene of 7 Canine distemper virus (CDV) strains identified in dogs in Italy between years 2002-2012. The phylogenetic analysis showed that the CDV strains belonged to 2 clusters: 6 viruses were identified as Arctic-like lineage and 1 as Europe 1 lineage. These data show a considerable prevalence of Arctic-like-CDVs in the analysed dogs. The dogs and the 3 viruses more recently identified showed 4 distinctive amino acid mutations compared to all other Arctic CDV

    Regressing multiple viral plaques and skin fragility syndrome in a cat coinfected with FcaPV2 and FcaPV3

    Get PDF
    Feline viral plaques are uncommon skin lesions clinically characterized by multiple, often pigmented, and slightly raised lesions. Numerous reports suggest that papillomaviruses (PVs) are involved in their development. Immunosuppressed and immunocompetent cats are both affected, the biological behavior is variable, and the regression is possible but rarely documented. Here we report a case of a FIV-positive cat with skin fragility syndrome and regressing multiple viral plaques in which the contemporary presence of two PV types (FcaPV2 and FcaPV3) was demonstrated by combining a quantitative molecular approach to histopathology. The cat, under glucocorticoid therapy for stomatitis and pruritus, developed skin fragility and numerous grouped slightly raised nonulcerated pigmented macules and plaques with histological features of epidermal thickness, mild dysplasia, and presence of koilocytes. Absolute quantification of the viral DNA copies (4555 copies/microliter of FcaPV2 and 8655 copies/microliter of FcaPV3) was obtained. Eighteen months after discontinuation of glucocorticoid therapy skin fragility and viral plaques had resolved.The role of the two viruses cannot be established and it remains undetermined how each of the viruses has contributed to the onset of VP; the spontaneous remission of skin lesions might have been induced by FIV status change over time due to glucocorticoid withdraw and by glucocorticoids withdraw itself

    Turbulent pair dispersion of inertial particles

    Get PDF
    The relative dispersion of pairs of inertial particles in incompressible, homogeneous, and isotropic turbulence is studied by means of direct numerical simulations at two values of the Taylor-scale Reynolds number Reλ∌200Re_{\lambda} \sim 200 and 400. The evolution of both heavy and light particle pairs is analysed at varying the particle Stokes number and the fluid-to-particle density ratio. For heavy particles, it is found that turbulent dispersion is schematically governed by two temporal regimes. The first is dominated by the presence, at large Stokes numbers, of small-scale caustics in the particle velocity statistics, and it lasts until heavy particle velocities have relaxed towards the underlying flow velocities. At such large scales, a second regime starts where heavy particles separate as tracers particles would do. As a consequence, at increasing inertia, a larger transient stage is observed, and the Richardson diffusion of simple tracers is recovered only at large times and large scales. These features also arise from a statistical closure of the equation of motion for heavy particle separation that is proposed, and which is supported by the numerical results. In the case of light particles with high density ratios, strong small-scale clustering leads to a considerable fraction of pairs that do not separate at all, although the mean separation increases with time. This effect strongly alters the shape of the probability density function of light particle separations.Comment: 28 pages, 15 figure

    Build up of yield stress fluids via chaotic emulsification

    Get PDF
    Stabilised dense emulsions display a rich phenomenology connecting microstructure and rheology. In this work, we study how an emulsion with a finite yield stress can be built via large-scale stirring. By gradually increasing the volume fraction of the dispersed minority phase, under the constant action of a stirring force, we are able to achieve a volume fraction close to (Formula presented.). Despite the fact that our system is highly concentrated and not yet turbulent we observe a droplet size distribution consistent with the (Formula presented.) scaling, often associated with inertial range droplets breakup. We report that the polydispersity of droplet sizes correlates with the dynamics of the emulsion formation process. Additionally, we quantify the visco-elastic properties of the dense emulsion finally obtained and we demonstrate the presence of a finite yield stress. The approach reported can pave the way to a quantitative understanding of the complex interplay between the dynamics of mesoscale constituents and the large-scale flow properties of yield stress fluids
    • 

    corecore