7 research outputs found

    PredNet and Predictive Coding: A Critical Review

    Full text link
    PredNet, a deep predictive coding network developed by Lotter et al., combines a biologically inspired architecture based on the propagation of prediction error with self-supervised representation learning in video. While the architecture has drawn a lot of attention and various extensions of the model exist, there is a lack of a critical analysis. We fill in the gap by evaluating PredNet both as an implementation of the predictive coding theory and as a self-supervised video prediction model using a challenging video action classification dataset. We design an extended model to test if conditioning future frame predictions on the action class of the video improves the model performance. We show that PredNet does not yet completely follow the principles of predictive coding. The proposed top-down conditioning leads to a performance gain on synthetic data, but does not scale up to the more complex real-world action classification dataset. Our analysis is aimed at guiding future research on similar architectures based on the predictive coding theory

    VendorLink: An NLP approach for Identifying & Linking Vendor Migrants & Potential Aliases on Darknet Markets

    Full text link
    The anonymity on the Darknet allows vendors to stay undetected by using multiple vendor aliases or frequently migrating between markets. Consequently, illegal markets and their connections are challenging to uncover on the Darknet. To identify relationships between illegal markets and their vendors, we propose VendorLink, an NLP-based approach that examines writing patterns to verify, identify, and link unique vendor accounts across text advertisements (ads) on seven public Darknet markets. In contrast to existing literature, VendorLink utilizes the strength of supervised pre-training to perform closed-set vendor verification, open-set vendor identification, and low-resource market adaption tasks. Through VendorLink, we uncover (i) 15 migrants and 71 potential aliases in the Alphabay-Dreams-Silk dataset, (ii) 17 migrants and 3 potential aliases in the Valhalla-Berlusconi dataset, and (iii) 75 migrants and 10 potential aliases in the Traderoute-Agora dataset. Altogether, our approach can help Law Enforcement Agencies (LEA) make more informed decisions by verifying and identifying migrating vendors and their potential aliases on existing and Low-Resource (LR) emerging Darknet markets

    Tx-ray: Quantifying and explaining model-knowledge transfer in (un-) supervised NLP

    No full text
    While state-of-the-art NLP explainability (XAI) methods focus on explaining per-sample decisions in supervised end or probing tasks, this is insufficient to explain and quantify model knowledge transfer during (un-) supervised training. Thus, for TX-Ray, we modify the established computer vision explainability principle of ‘visualizing preferred inputs of neurons’ to make it usable for both NLP and for transfer analysis. This allows one to analyze, track and quantify how self-or supervised NLP models first build knowledge abstractions in pretraining (1), andthen transfer abstractions to a new domain (2), or adapt them during supervised finetuning (3)–see Fig. 1. TX-Ray expresses neurons as feature preference distributions to quantify fine-grained knowledge transfer or adaptation and guide human analysis. We find that, similar to Lottery Ticket based pruning, TX-Ray based pruning can improve test set generalization and that it can reveal how early stages of self-supervision automatically learn linguistic abstractions like parts-of-speech
    corecore