11 research outputs found

    Procyanidins are potent inhibitors of LOX-1: a new player in the French Paradox

    Get PDF
    Lectin-like oxidized LDL receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL (oxLDL) and plays multiple roles in the development of cardiovascular diseases. We screened more than 400 foodstuff extracts for identifying materials that inhibit oxLDL binding to LOX-1. Results showed that 52 extracts inhibited LOX-1 by more than 70% in cell-free assays. Subsequent cell-based assays revealed that a variety of foodstuffs known to be rich in procyanidins such as grape seed extracts and apple polyphenols, potently inhibited oxLDL uptake in Chinese hamster ovary (CHO) cells expressing LOX-1. Indeed, purified procyanidins significantly inhibited oxLDL binding to LOX-1 while other ingredients of apple polyphenols did not. Moreover, chronic administration of oligomeric procyanidins suppressed lipid accumulation in vascular wall in hypertensive rats fed with high fat diet. These results suggest that procyanidins are LOX-1 inhibitors and LOX-1 inhibition might be a possible underlying mechanism of the well-known vascular protective effects of red wine, the French Paradox

    The Discovery of LOX-1, its Ligands and Clinical Significance

    Get PDF
    LOX-1 is an endothelial receptor for oxidized low-density lipoprotein (oxLDL), a key molecule in the pathogenesis of atherosclerosis.The basal expression of LOX-1 is low but highly induced under the influence of proinflammatory and prooxidative stimuli in vascular endothelial cells, smooth muscle cells, macrophages, platelets and cardiomyocytes. Multiple lines of in vitro and in vivo studies have provided compelling evidence that LOX-1 promotes endothelial dysfunction and atherogenesis induced by oxLDL. The roles of LOX-1 in the development of atherosclerosis, however, are not simple as it had been considered. Evidence has been accumulating that LOX-1 recognizes not only oxLDL but other atherogenic lipoproteins, platelets, leukocytes and CRP. As results, LOX-1 not only mediates endothelial dysfunction but contributes to atherosclerotic plaque formation, thrombogenesis, leukocyte infiltration and myocardial infarction, which determine mortality and morbidity from atherosclerosis. Moreover, our recent epidemiological study has highlighted the involvement of LOX-1 in human cardiovascular diseases. Further understandings of LOX-1 and its ligands as well as its versatile functions will direct us to ways to find novel diagnostic and therapeutic approaches to cardiovascular disease
    corecore