2 research outputs found

    Frustrated spin chain physics near the Majumdar-Ghosh point in szenicsite Cu3(MoO4)(OH)4

    Get PDF
    © 2017 American Physical Society. In this joint experimental and theoretical work magnetic properties of the Cu2+ mineral szenicsite Cu3(MoO4)(OH)4 are investigated. This compound features isolated triple chains in its crystal structure, where the central chain involves an edge-sharing geometry of the CuO4 plaquettes, while the two side chains feature a corner-sharing zigzag geometry. The magnetism of the side chains can be described in terms of antiferromagnetic dimers with a coupling larger than 200 K. The central chain was found to be a realization of the frustrated antiferromagnetic J1-J2 chain model with J1≃68 K and a sizable second-neighbor coupling J2. The central and side chains are nearly decoupled owing to interchain frustration. Therefore, the low-temperature behavior of szenicsite should be entirely determined by the physics of the central frustrated J1-J2 chain. Our heat-capacity measurements reveal an accumulation of magnetic entropy at low temperatures and suggest a proximity of the system to the Majumdar-Ghosh point of the antiferromagnetic J1-J2 spin chain, J2/J1=0.5

    Strong magnetic frustration and anti-site disorder causing spin-glass behavior in honeycomb Li2RhO3

    Get PDF
    With large spin-orbit coupling, the electron configuration in d-metal oxides is prone to highly anisotropic exchange interactions and exotic magnetic properties. In 5d5 iridates, given the existing variety of crystal structures, the magnetic anisotropy can be tuned from antisymmetric to symmetric Kitaev-type, with interaction strengths that outsize the isotropic terms. By many-body electronic-structure calculations we here address the nature of the magnetic exchange and the intriguing spin-glass behavior of Li2RhO3, a 4d5 honeycomb oxide. For pristine crystals without Rh-Li site inversion, we predict a dimerized ground state as in the isostructural 5d5 iridate Li2IrO3, with triplet spin dimers effectively placed on a frustrated triangular lattice. With Rh-Li anti-site disorder, we explain the observed spin-glass phase as a superposition of different, nearly degenerate symmetry-broken configurations
    corecore