1,644 research outputs found

    Optimal Layout Design for Agricultural Facility Using Simulated Annealing

    Full text link
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a Technical Paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 5 (2003): T. Satake, O. Sataka, Y. Ohta, and T. Furuya. Optimal Layout Design for Agricultural Facility Using Simulated Annealing. Vol. V. May 2003

    Radiation Protection and Management

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Benchmark Test of Drift-kinetic and Gyrokinetic Codes through Neoclassical Transport Simulations

    Get PDF
    Two simulation codes that solve the drift-kinetic or gyrokinetic equation in toroidal plasmas are benchmarked by comparing the simulation results of neoclassical transport. The two codes are the drift-kinetic delta f Monte Carlo code (FORTEC-3D) and the gyrokinetic full- f Vlasov code (GT5D), both of which solve radially-global, five-dimensional kinetic equation with including the linear Fokker-Planck collision operator. In a tokamak configuration, neoclassical radial heat flux and the force balance relation, which relates the parallel mean flow with radial electric field and temperature gradient, are compared between these two codes, and their results are also compared with the local neoclassical transport theory. It is found that the simulation results of the two codes coincide very well in a wide rage of plasma collisionality parameter nu = 0.01 ~ 10 and also agree with the theoretical estimations. The time evolution of radial electric field and particle flux, and the radial profile of the geodesic acoustic mode frequency also coincide very well. These facts guarantee the capability of GT5D to simulate plasma turbulence transport with including proper neoclassical effects of collisional diffusion and equilibrium radial electric field

    Hospital preparedness for foreign patients : A postal survey of 97 public hospitals in Japan

    Full text link
    研究報

    Tsunami generation of the 1993 Hokkaido Nansei-Oki earthquake

    Full text link
    Heterogeneous fault motion of the 1993 Hokkaido Nansei-Oki earthquake is studied by using seismic, geodetic and tsunami data, and the tsunami generation from the fault model is examined. Seismological analyses indicate that the focal mechanism of the first 10 s, when about a third of the total moment was released, is different from the overall focal mechanism. A joint inversion of geodetic data on Okushiri Island and the tide gauge records in Japan and Korea indicates that the largest slip, about 6 m, occurred in a small area just south of the epicenter. This corresponds to the initial rupture on a fault plane dipping shallowly to the west. The slip on the northernmost subfault, which is dipping to the east, is about 2 m, while the slips on the southern subfaults, which are steeply dipping to the west, are more than 3 m. Tsunami heights around Okushiri Island are calculated from the heterogeneous fault model using different grid sizes. Computation on the smaller grids produces large tsunami height that are closer to the observed tsunami runup heights. Tsunami propagation in the nearly closed Japan Sea is examined as the free oscillation of the Japan Sea. The excitation of the free oscillation by this earthquake is smaller than that by the 1964 Niigata or 1983 Japan Sea earthquake.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43222/1/24_2004_Article_BF00874395.pd

    Radiation Protection and Management

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付
    corecore