410 research outputs found
Operation of Faddeev-Kernel in Configuration Space
We present a practical method to solve Faddeev three-body equations at
energies above three-body breakup threshold as integral equations in coordinate
space. This is an extension of previously used method for bound states and
scattering states below three-body breakup threshold energy. We show that
breakup components in three-body reactions produce long-range effects on
Faddeev integral kernels in coordinate space, and propose numerical procedures
to treat these effects. Using these techniques, we solve Faddeev equations for
neutron-deuteron scattering to compare with benchmark solutions.Comment: 20 pages, 8 figures, to be published in Few-Body System
Triton calculations with and exchange three-nucleon forces
The Faddeev equations are solved in momentum space for the trinucleon bound
state with the new Tucson-Melbourne and exchange three-nucleon
potentials. The three-nucleon potentials are combined with a variety of
realistic two-nucleon potentials. The dependence of the triton binding energy
on the cut-off parameter in the three-nucleon potentials is studied
and found to be reduced compared to the case with pure exchange. The
exchange parts of the three-nucleon potential yield an overall repulsive
effect. When the recommended parameters are employed, the calculated triton
binding energy turns out to be very close to its experimental value.
Expectation values of various components of the three-nucleon potential are
given to illustrate their significance for binding.Comment: 17 pages Revtex 3.0, 4 figures. Accepted for publication in Phys.
Rev.
Covariant equations for the three-body bound state
The covariant spectator (or Gross) equations for the bound state of three
identical spin 1/2 particles, in which two of the three interacting particles
are always on shell, are developed and reduced to a form suitable for numerical
solution. The equations are first written in operator form and compared to the
Bethe-Salpeter equation, then expanded into plane wave momentum states, and
finally expanded into partial waves using the three-body helicity formalism
first introduced by Wick. In order to solve the equations, the two-body
scattering amplitudes must be boosted from the overall three-body rest frame to
their individual two-body rest frames, and all effects which arise from these
boosts, including the Wigner rotations and rho-spin decomposition of the
off-shell particle, are treated exactly. In their final form, the equations
reduce to a coupled set of Faddeev-like double integral equations with
additional channels arising from the negative rho-spin states of the off-shell
particle.Comment: 57 pages, RevTeX, 6 figures, uses epsf.st
proton-deuteron elastic scattering above the deuteron breakup
The complex Kohn variational principle and the (correlated) hyperspherical
harmonics method are applied to study the proton-deuteron elastic scattering at
energies above the deuteron breakup threshold. Results for the elastic cross
section and various elastic polarization observables have been obtained by
fully taking into account the long-range effect of the Coulomb interaction and
using a realistic nucleon-nucleon interaction model. Detailed comparison
between the theoretical predictions and the accurate and abundant
proton-deuteron experimental data can now be performed.Comment: 6 pages, 2 figure
Neutron-3H and Proton-3He Zero Energy Scattering
The Kohn variational principle and the (correlated) Hyperspherical Harmonics
technique are applied to study the n-3H and p-3He scattering at zero energy.
Predictions for the singlet and triplet scattering lengths are obtained for
non-relativistic nuclear Hamiltonians including two- and three-body potentials.
The calculated n-3H total cross section agrees well with the measured value,
while some small discrepancy is found for the coherent scattering length. For
the p-3He channel, the calculated scattering lengths are in reasonable
agreement with the values extrapolated from the measurements made above 1 MeV.Comment: 13 pages, REVTEX, 1 figur
Momentum and Coordinate Space Three-nucleon Potentials
In this paper we give explicit formulae in momentum and coordinate space for
the three-nucleon potentials due to and meson exchange, derived
from off-mass-shell meson-nucleon scattering amplitudes which are constrained
by the symmetries of QCD and by the experimental data. Those potentials have
already been applied to nuclear matter calculations. Here we display additional
terms which appear to be the most important for nuclear structure. The
potentials are decomposed in a way that separates the contributions of
different physical mechanisms involved in the meson-nucleon amplitudes. The
same type of decomposition is presented for the TM force: the
, the chiral symmetry breaking and the nucleon pair terms are isolated.Comment: LATEX, 33 pages, 3 figures (available as postscript files upon
request
Relativistic Effect on Low-Energy Nucleon-Deuteron Scattering
The relativistic effect on differential cross sections, nucleon-to-nucleon
and nucleon-to-deuteron polarization transfer coefficients, and the spin
correlation function, of nucleon-deuteron elastic scattering is investigated
employing several three-dimensional relativistic three-body equations and
several nucleon-nucleon potentials. The polarization transfer coefficients are
found to be sensitive to the details of the nucleon-nucleon potentials and the
relativistic dynamics employed, and prefer trinucleon models with the correct
triton binding energy. (To appear in Phys. Rev. C)Comment: pages: 21, LaTex text + 7 ps-figures at the en
The pd <--> pi+ t reaction around the Delta resonance
The pd pi+ t process has been calculated in the energy region around the
Delta-resonance with elementary production/absorption mechanisms involving one
and two nucleons. The isobar degrees of freedom have been explicitly included
in the two-nucleon mechanism via pi-- and rho-exchange diagrams. No free
parameters have been employed in the analysis since all the parameters have
been fixed in previous studies on the simpler pp pi+ d process. The
treatment of the few-nucleon dynamics entailed a Faddeev-based calculation of
the reaction, with continuum calculations for the initial p-d state and
accurate solutions of the three-nucleon bound-state equation. The integral
cross-section was found to be quite sensitive to the NN interaction employed
while the angular dependence showed less sensitivity. Approximately a 4% effect
was found for the one-body mechanism, for the three-nucleon dynamics in the p-d
channel, and for the inclusion of a large, possibly converged, number of
three-body partial states, indicating that these different aspects are of
comparable importance in the calculation of the spin-averaged observables.Comment: 40 Pages, RevTex, plus 5 PostScript figure
Relativistic Corrections to the Triton Binding Energy
The influence of relativity on the triton binding energy is investigated. The
relativistic three-dimensional version of the Bethe-Salpeter equation proposed
by Blankenbecler and Sugar (BbS) is used. Relativistic (non-separable)
one-boson-exchange potentials (constructed in the BbS framework) are employed
for the two-nucleon interaction. In a 34-channel Faddeev calculation, it is
found that relativistic effects increase the triton binding energy by about 0.2
MeV. Including charge-dependence (besides relativity), the final triton binding
energy predictions are 8.33 and 8.16 MeV for the Bonn A and B potential,
respectively.Comment: 25 pages of text (latex), 1 figure (not included, available upon
request
- âŠ