70 research outputs found

    Learning (Predictive) Risk Scores in the Presence of Censoring due to Interventions

    Full text link
    A large and diverse set of measurements are regularly collected during a patient's hospital stay to monitor their health status. Tools for integrating these measurements into severity scores, that accurately track changes in illness severity, can improve clinicians ability to provide timely interventions. Existing approaches for creating such scores either 1) rely on experts to fully specify the severity score, or 2) train a predictive score, using supervised learning, by regressing against a surrogate marker of severity such as the presence of downstream adverse events. The first approach does not extend to diseases where an accurate score cannot be elicited from experts. The second approach often produces scores that suffer from bias due to treatment-related censoring (Paxton, 2013). We propose a novel ranking based framework for disease severity score learning (DSSL). DSSL exploits the following key observation: while it is challenging for experts to quantify the disease severity at any given time, it is often easy to compare the disease severity at two different times. Extending existing ranking algorithms, DSSL learns a function that maps a vector of patient's measurements to a scalar severity score such that the resulting score is temporally smooth and consistent with the expert's ranking of pairs of disease states. We apply DSSL to the problem of learning a sepsis severity score using a large, real-world dataset. The learned scores significantly outperform state-of-the-art clinical scores in ranking patient states by severity and in early detection of future adverse events. We also show that the learned disease severity trajectories are consistent with clinical expectations of disease evolution. Further, using simulated datasets, we show that DSSL exhibits better generalization performance to changes in treatment patterns compared to the above approaches

    Tutorial: Safe and Reliable Machine Learning

    Full text link
    This document serves as a brief overview of the "Safe and Reliable Machine Learning" tutorial given at the 2019 ACM Conference on Fairness, Accountability, and Transparency (FAT* 2019). The talk slides can be found here: https://bit.ly/2Gfsukp, while a video of the talk is available here: https://youtu.be/FGLOCkC4KmE, and a complete list of references for the tutorial here: https://bit.ly/2GdLPme.Comment: Overview of the "Safe and Reliable Machine Learning" tutorial given at the 2019 ACM Conference on Fairness, Accountability, and Transparency (FAT* 2019

    A Framework for Individualizing Predictions of Disease Trajectories by Exploiting Multi-Resolution Structure

    Full text link
    For many complex diseases, there is a wide variety of ways in which an individual can manifest the disease. The challenge of personalized medicine is to develop tools that can accurately predict the trajectory of an individual's disease, which can in turn enable clinicians to optimize treatments. We represent an individual's disease trajectory as a continuous-valued continuous-time function describing the severity of the disease over time. We propose a hierarchical latent variable model that individualizes predictions of disease trajectories. This model shares statistical strength across observations at different resolutions--the population, subpopulation and the individual level. We describe an algorithm for learning population and subpopulation parameters offline, and an online procedure for dynamically learning individual-specific parameters. Finally, we validate our model on the task of predicting the course of interstitial lung disease, a leading cause of death among patients with the autoimmune disease scleroderma. We compare our approach against state-of-the-art and demonstrate significant improvements in predictive accuracy.Comment: Appeared in Neural Information Processing Systems (NIPS) 201

    Reliable Decision Support using Counterfactual Models

    Full text link
    Decision-makers are faced with the challenge of estimating what is likely to happen when they take an action. For instance, if I choose not to treat this patient, are they likely to die? Practitioners commonly use supervised learning algorithms to fit predictive models that help decision-makers reason about likely future outcomes, but we show that this approach is unreliable, and sometimes even dangerous. The key issue is that supervised learning algorithms are highly sensitive to the policy used to choose actions in the training data, which causes the model to capture relationships that do not generalize. We propose using a different learning objective that predicts counterfactuals instead of predicting outcomes under an existing action policy as in supervised learning. To support decision-making in temporal settings, we introduce the Counterfactual Gaussian Process (CGP) to predict the counterfactual future progression of continuous-time trajectories under sequences of future actions. We demonstrate the benefits of the CGP on two important decision-support tasks: risk prediction and "what if?" reasoning for individualized treatment planning.Comment: Published in the proceedings of Neural Information Processing Systems (NIPS) 201

    Discretizing Logged Interaction Data Biases Learning for Decision-Making

    Full text link
    Time series data that are not measured at regular intervals are commonly discretized as a preprocessing step. For example, data about customer arrival times might be simplified by summing the number of arrivals within hourly intervals, which produces a discrete-time time series that is easier to model. In this abstract, we show that discretization introduces a bias that affects models trained for decision-making. We refer to this phenomenon as discretization bias, and show that we can avoid it by using continuous-time models instead.Comment: This is a standalone short paper describing a new type of bias that can arise when learning from time series data for sequential decision-making problem

    Trading-Off Cost of Deployment Versus Accuracy in Learning Predictive Models

    Full text link
    Predictive models are finding an increasing number of applications in many industries. As a result, a practical means for trading-off the cost of deploying a model versus its effectiveness is needed. Our work is motivated by risk prediction problems in healthcare. Cost-structures in domains such as healthcare are quite complex, posing a significant challenge to existing approaches. We propose a novel framework for designing cost-sensitive structured regularizers that is suitable for problems with complex cost dependencies. We draw upon a surprising connection to boolean circuits. In particular, we represent the problem costs as a multi-layer boolean circuit, and then use properties of boolean circuits to define an extended feature vector and a group regularizer that exactly captures the underlying cost structure. The resulting regularizer may then be combined with a fidelity function to perform model prediction, for example. For the challenging real-world application of risk prediction for sepsis in intensive care units, the use of our regularizer leads to models that are in harmony with the underlying cost structure and thus provide an excellent prediction accuracy versus cost tradeoff.Comment: Authors contributed equally to this work. To appear in IJCAI 2016, Twenty-Fifth International Joint Conference on Artificial Intelligence, 201

    Reasoning at the Right Time Granularity

    Full text link
    Most real-world dynamic systems are composed of different components that often evolve at very different rates. In traditional temporal graphical models, such as dynamic Bayesian networks, time is modeled at a fixed granularity, generally selected based on the rate at which the fastest component evolves. Inference must then be performed at this fastest granularity, potentially at significant computational cost. Continuous Time Bayesian Networks (CTBNs) avoid time-slicing in the representation by modeling the system as evolving continuously over time. The expectation-propagation (EP) inference algorithm of Nodelman et al. (2005) can then vary the inference granularity over time, but the granularity is uniform across all parts of the system, and must be selected in advance. In this paper, we provide a new EP algorithm that utilizes a general cluster graph architecture where clusters contain distributions that can overlap in both space (set of variables) and time. This architecture allows different parts of the system to be modeled at very different time granularities, according to their current rate of evolution. We also provide an information-theoretic criterion for dynamically re-partitioning the clusters during inference to tune the level of approximation to the current rate of evolution. This avoids the need to hand-select the appropriate granularity, and allows the granularity to adapt as information is transmitted across the network. We present experiments demonstrating that this approach can result in significant computational savings.Comment: Appears in Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence (UAI2007

    Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction

    Full text link
    Missing data and noisy observations pose significant challenges for reliably predicting events from irregularly sampled multivariate time series (longitudinal) data. Imputation methods, which are typically used for completing the data prior to event prediction, lack a principled mechanism to account for the uncertainty due to missingness. Alternatively, state-of-the-art joint modeling techniques can be used for jointly modeling the longitudinal and event data and compute event probabilities conditioned on the longitudinal observations. These approaches, however, make strong parametric assumptions and do not easily scale to multivariate signals with many observations. Our proposed approach consists of several key innovations. First, we develop a flexible and scalable joint model based upon sparse multiple-output Gaussian processes. Unlike state-of-the-art joint models, the proposed model can explain highly challenging structure including non-Gaussian noise while scaling to large data. Second, we derive an optimal policy for predicting events using the distribution of the event occurrence estimated by the joint model. The derived policy trades-off the cost of a delayed detection versus incorrect assessments and abstains from making decisions when the estimated event probability does not satisfy the derived confidence criteria. Experiments on a large dataset show that the proposed framework significantly outperforms state-of-the-art techniques in event prediction.Comment: To appear in IEEE Transaction on Pattern Analysis and Machine Intelligenc

    Discovering shared and individual latent structure in multiple time series

    Full text link
    This paper proposes a nonparametric Bayesian method for exploratory data analysis and feature construction in continuous time series. Our method focuses on understanding shared features in a set of time series that exhibit significant individual variability. Our method builds on the framework of latent Diricihlet allocation (LDA) and its extension to hierarchical Dirichlet processes, which allows us to characterize each series as switching between latent ``topics'', where each topic is characterized as a distribution over ``words'' that specify the series dynamics. However, unlike standard applications of LDA, we discover the words as we learn the model. We apply this model to the task of tracking the physiological signals of premature infants; our model obtains clinically significant insights as well as useful features for supervised learning tasks.Comment: Additional supplementary section in tex fil

    Preventing Failures Due to Dataset Shift: Learning Predictive Models That Transport

    Full text link
    Classical supervised learning produces unreliable models when training and target distributions differ, with most existing solutions requiring samples from the target domain. We propose a proactive approach which learns a relationship in the training domain that will generalize to the target domain by incorporating prior knowledge of aspects of the data generating process that are expected to differ as expressed in a causal selection diagram. Specifically, we remove variables generated by unstable mechanisms from the joint factorization to yield the Surgery Estimator---an interventional distribution that is invariant to the differences across environments. We prove that the surgery estimator finds stable relationships in strictly more scenarios than previous approaches which only consider conditional relationships, and demonstrate this in simulated experiments. We also evaluate on real world data for which the true causal diagram is unknown, performing competitively against entirely data-driven approaches.Comment: In Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 2019. Previously presented at the NeurIPS 2018 Causal Learning Worksho
    • …
    corecore