46 research outputs found
Sudden sensorineural hearing loss: What factors influence the response to therapy?
The standard treatment of Sudden Sensorineural Hearing Loss is based on oral steroids. In addition, intratympanic steroid is currently used in patients who fail to respond to oral treatment. The aim of the present study was to evaluate, in patients affected by SSHL, factors that influence the response to systemic and intratympanic steroid treatment. A retrospective analysis was conducted on 149 patients, all treated with systemic steroids. Moreover, patients not responsive to systemic therapy were treated with intratympanic steroids as salvage therapy. Auditory gain was assessed through the recovery rate at the discharge and after 30 days. Statistical analysis demonstrated that patients with delayed treatment and down-sloping auditory curve presented a poor recovery. Linear and stepwise regression showed that hypertriglyceridemia and hyperglycemia were negative prognostic factors. The prognosis of SSHL is affected by hyperglycemia and hypertriglyceridemia suggesting that a microvascular dysfunction within the cochlea could impair hearing recovery. Intratympanic steroid treatment was used as salvage treatment, however in patients with poor prognostic factors or at risk for side effects, it could be used in association with systemic treatment
HuD regulates SOD1 expression during oxidative stress in differentiated neuroblastoma cells and sporadic ALS motor cortex.
The neuronal RNA-binding protein (RBP) HuD plays an important role in brain development, synaptic plasticity and neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). Bioinformatics analysis of the human SOD1 mRNA 3' untranslated region (3'UTR) demonstrated the presence of HuD binding adenine-uridine (AU)-rich instability-conferring elements (AREs). Using differentiated SH-SY5Y cells along with brain tissues from sporadic amyotrophic lateral sclerosis (sALS) patients, we assessed HuD-dependent regulation of SOD1 mRNA. In vitro binding and mRNA decay assays demonstrate that HuD specifically binds to SOD1 ARE motifs promoting mRNA stabilization. In SH-SY5Y cells, overexpression of full-length HuD increased SOD1 mRNA and protein levels while a dominant negative form of the RBP downregulated its expression. HuD regulation of SOD1 mRNA was also found to be oxidative stress (OS)-dependent, as shown by the increased HuD binding and upregulation of this mRNA after H2O2 exposure. This treatment also induced a shift in alternative polyadenylation (APA) site usage in SOD1 3'UTR, increasing the levels of a long variant bearing HuD binding sites. The requirement of HuD for SOD1 upregulation during oxidative damage was validated using a specific siRNA that downregulated HuD protein levels to 36% and prevented upregulation of SOD1 and 91 additional genes. In the motor cortex from sALS patients, we found increases in SOD1 and HuD mRNAs and proteins, accompanied by greater HuD binding to this mRNA as confirmed by RNA-immunoprecipitation (RIP) assays. Altogether, our results suggest a role of HuD in the post-transcriptional regulation of SOD1 expression during ALS pathogenesis
siRNA screen identifies QPCT as a druggable target for Huntington's disease.
Huntington's disease (HD) is a currently incurable neurodegenerative condition caused by an abnormally expanded polyglutamine tract in huntingtin (HTT). We identified new modifiers of mutant HTT toxicity by performing a large-scale 'druggable genome' siRNA screen in human cultured cells, followed by hit validation in Drosophila. We focused on glutaminyl cyclase (QPCT), which had one of the strongest effects on mutant HTT-induced toxicity and aggregation in the cell-based siRNA screen and also rescued these phenotypes in Drosophila. We found that QPCT inhibition induced the levels of the molecular chaperone αB-crystallin and reduced the aggregation of diverse proteins. We generated new QPCT inhibitors using in silico methods followed by in vitro screening, which rescued the HD-related phenotypes in cell, Drosophila and zebrafish HD models. Our data reveal a new HD druggable target affecting mutant HTT aggregation and provide proof of principle for a discovery pipeline from druggable genome screen to drug development
Association of Neuroretinal Thinning and Microvascular Changes with Hypertension in an Older Population in Southern Italy.
Retinal microvasculature assessment at capillary level may potentially aid the evaluation of early microvascular changes due to hypertension. We aimed to investigate associations between the measures obtained using optical coherence tomography (OCT) and OCT-angiography (OCT-A) and hypertension, in a southern Italian older population. We performed a cross-sectional analysis from a population-based study on 731 participants aged 65 years+ subdivided into two groups according to the presence or absence of blood hypertension without hypertensive retinopathy. The average thickness of the ganglion cell complex (GCC) and the retinal nerve fiber layer (RNFL) were measured. The foveal avascular zone area, vascular density (VD) at the macular site and of the optic nerve head (ONH) and radial peripapillary capillary (RPC) plexi were evaluated. Logistic regression was applied to assess the association of ocular measurements with hypertension. GCC thickness was inversely associated with hypertension (odds ratio (OR): 0.98, 95% confidence interval (CI): 0.97-1). A rarefaction of VD of the ONH plexus at the inferior temporal sector (OR: 0.95, 95% CI: 0.91-0.99) and, conversely, a higher VD of the ONH and RPC plexi inside optic disc (OR: 1.07, 95% CI: 1.04-1.10; OR: 1.04, 95% CI: 1.02-1.06, respectively) were significantly associated with hypertension. A neuroretinal thinning involving GCC and a change in capillary density at the peripapillary network were related to the hypertension in older patients without hypertensive retinopathy. Assessing peripapillary retinal microvasculature using OCT-A may be a useful non-invasive approach to detect early microvascular changes due to hypertension
A multicenter comparison of quantification methods for antisense oligonucleotide-induced DMD exon 51 skipping in Duchenne muscular dystrophy cell cultures
Background: Duchenne muscular dystrophy is a lethal disease caused by lack of dystrophin. Skipping of exons adjacent to out-of-frame deletions has proven to restore dystrophin expression in Duchenne patients. Exon 51 has been the most studied target in both preclinical and clinical settings and the availability of standardized procedures to quantify exon skipping would be advantageous for the evaluation of preclinical and clinical data. Objective: To compare methods currently used to quantify antisense oligonucleotide–induced exon 51 skipping in the DMD transcript and to provide guidance about the method to use. Methods: Six laboratories shared blinded RNA samples from Duchenne patient-derived muscle cells treated with different amounts of exon 51 targeting antisense oligonucleotide. Exon 51 skipping levels were quantified using five different techniques: digital droplet PCR, single PCR assessed with Agilent bioanalyzer, nested PCR with agarose gel image analysis by either ImageJ or GeneTools software and quantitative real-time PCR. Results: Differences in mean exon skipping levels and dispersion around the mean were observed across the different techniques. Results obtained by digital droplet PCR were reproducible and showed the smallest dispersion. Exon skipping quantification with the other methods showed overestimation of exon skipping or high data variation. Conclusions: Our results suggest that digital droplet PCR was the most precise and quantitative method. The quantification of exon 51 skipping by Agilent bioanalyzer after a single round of PCR was the second-best choice with a 2.3-fold overestimation of exon 51 skipping levels compared to digital droplet PCR
Allele-Specific Knockdown of ALS-Associated Mutant TDP-43 in Neural Stem Cells Derived from Induced Pluripotent Stem Cells
TDP-43 is found in cytoplasmic inclusions in 95% of amyotrophic lateral sclerosis (ALS) and 60% of frontotemporal lobar degeneration (FTLD). Approximately 4% of familial ALS is caused by mutations in TDP-43. The majority of these mutations are found in the glycine-rich domain, including the variant M337V, which is one of the most common mutations in TDP-43. In order to investigate the use of allele-specific RNA interference (RNAi) as a potential therapeutic tool, we designed and screened a set of siRNAs that specifically target TDP-43(M337V) mutation. Two siRNA specifically silenced the M337V mutation in HEK293T cells transfected with GFP-TDP-43(wt) or GFP-TDP-43(M337V) or TDP-43 C-terminal fragments counterparts. C-terminal TDP-43 transfected cells show an increase of cytosolic inclusions, which are decreased after allele-specific siRNA in M337V cells. We then investigated the effects of one of these allele-specific siRNAs in induced pluripotent stem cells (iPSCs) derived from an ALS patient carrying the M337V mutation. These lines showed a two-fold increase in cytosolic TDP-43 compared to the control. Following transfection with the allele-specific siRNA, cytosolic TDP-43 was reduced by 30% compared to cells transfected with a scrambled siRNA. We conclude that RNA interference can be used to selectively target the TDP-43(M337V) allele in mammalian and patient cells, thus demonstrating the potential for using RNA interference as a therapeutic tool for ALS
From Transcriptome to Noncoding RNAs: Implications in ALS Mechanism
In the last years, numerous studies have focused on understanding the metabolism of RNA and its implication in disease processes but abnormal RNA metabolism is still unknown. RNA plays a central role in translating genetic information into proteins and in many other catalytic and regulatory tasks. Recent advances in the study of RNA metabolism revealed complex pathways for the generation and maintenance of functional RNA in amyotrophic lateral sclerosis (ALS). Interestingly, perturbations in RNA processing have been described in ALS at various levels such as gene transcription, mRNA stabilization, transport, and translational regulations. In this paper, we will discuss the alteration of RNA profile in ALS disease, starting from transcription, the first step leading to gene expression, through the posttranscriptional regulation, including RNA/DNA binding proteins and aberrant exon splicing to protein noncoding RNAs, as lncRNA and microRNA
Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease
Neuromuscular disorders such as Duchenne Muscular Dystrophy and Spinal Muscular Atrophy are neurodegenerative genetic diseases characterized primarily by muscle weakness and wasting. Until recently there were no effective therapies for these conditions, but antisense oligonucleotides, a new class of synthetic single stranded molecules of nucleic acids, have demonstrated promising experimental results and are at different stages of regulatory approval. The antisense oligonucleotides can modulate the protein expression via targeting hnRNAs or mRNAs and inducing interference with splicing, mRNA degradation, or arrest of translation, finally, resulting in rescue or reduction of the target protein expression. Different classes of antisense oligonucleotides are being tested in several clinical trials, and limitations of their clinical efficacy and toxicity have been reported for some of these compounds, while more encouraging results have supported the development of others. New generation antisense oligonucleotides are also being tested in preclinical models together with specific delivery systems that could allow some of the limitations of current antisense oligonucleotides to be overcome, to improve the cell penetration, to achieve more robust target engagement, and hopefully also be associated with acceptable toxicity. This review article describes the chemical properties and molecular mechanisms of action of the antisense oligonucleotides and the therapeutic implications these compounds have in neuromuscular diseases. Current strategies and carrier systems available for the oligonucleotides delivery will be also described to provide an overview on the past, present and future of these appealing molecules
Algorithm-Aided Design for Composite Bridges
Bridges are geometrically complex infrastructures, and their designs usually exhibit significant geometric variations between different structural solutions. The modelling complexity implies a low degree of model reuse in comparable projects; moreover, with the development of new technologies and design ways, the AEC industry often requires computational cost reduction, less time for model developments and analysis, and little-to-zero material waste in the face of the environmental emergency. The present document proposes a generative approach to enhance the bridge design process, increasing efficiency by reducing computational costs and modelling efforts, tackling the aforementioned objectives. The following methodology relies on a workflow to create flexible geometric models, introducing parameters and numerical relationships between all the design variables. Therefore, from a generative development, different geometric solutions of a bridge’s family are created by modifying the parameter settings within the same model. Then, the present work aims to define a modelling and analysis strategy for a multi-girder composite bridge project based on parametric development, structural analysis, and optimization. The results integrate building information modeling (BIM) to explore and create high-potential designs with complex geometries and find cost-effective solutions