52 research outputs found
The helicase domain and C-terminus of human RecQL4 facilitate replication elongation on DNA templates damaged by ionizing radiation
The vertebrate RECQL4 (RECQ4) gene is thought to be the ortholog of budding yeast SLD2. However, RecQL4 contains within its C-terminus a RecQ-like helicase domain, which is absent in Sld2. We established human pre-B lymphocyte Nalm-6 cells, in which the endogenous RECQL4 gene was homozygously targeted such that the entire C-terminus would not be expressed. The RECQL4(ΔC/ΔC) cells behaved like the parental cells during unperturbed DNA replication or after treatment with agents that induce stalling of DNA replication forks, such as hydroxyurea (HU). However, after exposure to ionizing radiation (IR), the RECQL4(ΔC/ΔC) cells exhibited hypersensitivity, inability to complete S phase and prematurely terminated or paused DNA replication forks. Deletion of BLM, a gene that also encodes a RecQ helicase, had the opposite phenotype; an almost wild-type response to IR, but hypersensitivity to HU. Targeting both R ECQL4 and BLM resulted in viable cells, which exhibited mostly additive phenotypes compared with those exhibited by the RECQL4(ΔC/ΔC) and the BLM(− /− ) cells. We propose that RecQL4 facilitates DNA replication in cells that have been exposed to I
The Roles of Telomerase in the Generation of Polyploidy during Neoplastic Cell Growth
AbstractPolyploidy contributes to extensive intratumor genomic heterogeneity that characterizes advanced malignancies and is thought to limit the efficiency of current cancer therapies. It has been shown that telomere deprotection in p53-deficient mouse embryonic fibroblasts leads to high rates of polyploidization. We now show that tumor genome evolution through whole-genome duplication occurs in ∼15% of the karyotyped human neoplasms and correlates with disease progression. In a panel of human cancer and transformed cell lines representing the two known types of genomic instability (chromosomal and microsatellite), as well as the two known pathways of telomere maintenance in cancer (telomerase activity and alternative lengthening of telomeres), telomere dysfunction-driven polyploidization occurred independently of the mutational status of p53. Depending on the preexisting context of telomere maintenance, telomerase activity and its major components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA component (hTERC), exert both reverse transcriptase-related (canonical) and noncanonical functions to affect tumor genome evolution through suppression or induction of polyploidization. These new findings provide a more complete mechanistic understanding of cancer progression that may, in the future, lead to novel therapeutic interventions
Unusually stable abnormal karyotype in a highly aggressive melanoma negative for telomerase activity
Malignant melanomas are characterized by increased karyotypic complexity, extended aneuploidy and heteroploidy. We report a melanoma metastasis to the peritoneal cavity with an exceptionally stable, abnormal pseudodiploid karyotype as verified by G-Banding, subtelomeric, centromeric and quantitative Fluorescence in Situ Hybridization (FISH). Interestingly this tumor had no detectable telomerase activity as indicated by the Telomere Repeat Amplification Protocol. Telomeric Flow-FISH and quantitative telomeric FISH on mitotic preparations showed that malignant cells had relatively short telomeres. Microsatellite instability was ruled out by the allelic pattern of two major mononucleotide repeats. Our data suggest that a combination of melanoma specific genomic imbalances were sufficient and enough for this fatal tumor progression, that was not accompanied by genomic instability, telomerase activity, or the engagement of the alternative recombinatorial telomere lengthening pathway
Rif1 Maintains Telomere Length Homeostasis of ESCs by Mediating Heterochromatin Silencing
SummaryTelomere length homeostasis is essential for genomic stability and unlimited self-renewal of embryonic stem cells (ESCs). We show that telomere-associated protein Rif1 is required to maintain telomere length homeostasis by negatively regulating Zscan4 expression, a critical factor for telomere elongation by recombination. Depletion of Rif1 results in terminal hyperrecombination, telomere length heterogeneity, and chromosomal fusions. Reduction of Zscan4 by shRNA significantly rescues telomere recombination defects of Rif1-depleted ESCs and associated embryonic lethality. Further, Rif1 negatively modulates Zscan4 expression by maintaining H3K9me3 levels at subtelomeric regions. Mechanistically, Rif1 interacts and stabilizes H3K9 methylation complex. Thus, Rif1 regulates telomere length homeostasis of ESCs by mediating heterochromatic silencing
Recommended from our members
EXD2 Protects Stressed Replication Forks and Is Required for Cell Viability in the Absence of BRCA1/2.
Accurate DNA replication is essential to preserve genomic integrity and prevent chromosomal instability-associated diseases including cancer. Key to this process is the cells' ability to stabilize and restart stalled replication forks. Here, we show that the EXD2 nuclease is essential to this process. EXD2 recruitment to stressed forks suppresses their degradation by restraining excessive fork regression. Accordingly, EXD2 deficiency leads to fork collapse, hypersensitivity to replication inhibitors, and genomic instability. Impeding fork regression by inactivation of SMARCAL1 or removal of RECQ1's inhibition in EXD2-/- cells restores efficient fork restart and genome stability. Moreover, purified EXD2 efficiently processes substrates mimicking regressed forks. Thus, this work identifies a mechanism underpinned by EXD2's nuclease activity, by which cells balance fork regression with fork restoration to maintain genome stability. Interestingly, from a clinical perspective, we discover that EXD2's depletion is synthetic lethal with mutations in BRCA1/2, implying a non-redundant role in replication fork protection.Work in W.N.’s laboratory is funded by ICR Intramural Grant and Cancer Research UK Programme (A24881). R.A.S. and L.S. were supported by WIMM Senior Non-Clinical Fellowship awarded to W.N. M.M.S. and M.A.B. were supported by the Intramural Research Program of the NIH, National Institute on Aging, United States (Z01-AG000746-08). Work in S.G.’s laboratory is supported by BRFAA Intramural Funds. V.C. was supported by John S. Latsis Public Benefit Foundation and Alexander S. Onassis Public Benefit Foundation. Work in the P.P.’s laboratory is supported by grants from the Agence Nationale pour la Recherche (ANR), the Ligue Contre le Cancer (équipe labellisée), SIRIC Montpellier Cancer (INCa Inserm DGOS 12553), and the MSDAvenir fund
Cdc6 expression represses E-cadherin transcription and activates adjacent replication origins
The Cdc6 replication licensing factor acts as a molecular switch at the E-cadherin locus, leading to E-cadherin transcriptional repression and local activation of replication
Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing
The cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21) is a cell-cycle checkpoint effector and inducer of senescence, regulated by p53. Yet, evidence suggests that p21 could also be oncogenic, through a mechanism that has so far remained obscure. We report that a subset of atypical cancerous cells strongly expressing p21 showed proliferation features. This occurred predominantly in p53-mutant human cancers, suggesting p53-independent upregulation of p21 selectively in more aggressive tumour cells. Multifaceted phenotypic and genomic analyses of p21-inducible, p53-null, cancerous and near-normal cellular models showed that after an initial senescence-like phase, a subpopulation of p21-expressing proliferating cells emerged, featuring increased genomic instability, aggressiveness and chemoresistance. Mechanistically, sustained p21 accumulation inhibited mainly the CRL4–CDT2 ubiquitin ligase, leading to deregulated origin licensing and replication stress. Collectively, our data reveal the tumour-promoting ability of p21 through deregulation of DNA replication licensing machinery—an unorthodox role to be considered in cancer treatment, since p21 responds to various stimuli including some chemotherapy drugs
A Non-Canonical Function of Zebrafish Telomerase Reverse Transcriptase Is Required for Developmental Hematopoiesis
Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from “authentic” telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words
- …