1,161 research outputs found

    Polyelectrolyte multilayer assembly bearing ketoprofen for transdermal delivery

    Get PDF
    A novel microencapsulation technology based on layer-by-layer assembly has been extensively studied and used for controlled delivery of drug microcrystal having poor aqueous solubility and low bioavailability. A non-steroidal anti-inflammatory drug ketoprofen (KF)was selected for encapsulation using biodegradable and biocompatible polyions and synergistically the fabricated system was embedded in gel matrix for topical application. Topical application of the drugs at the pathological sites offer potential advantages of delivering the drug directly to the site of action and thus producing high tissue concentrations of the drug

    PLACKETT-BURMAN DESIGN AS A TOOL FOR SCREENING AND PROCESS OPTIMIZATION OF RIVASTIGMINE-LOADED LIPID NANOCARRIERS

    Get PDF
    Objective: Plackett–Burman experimental design is used to identify the most important factors early in the experimentation phase when complete knowledge about the system is usually unavailable. The objective of this study was to screen out the most important factors affecting the size and entrapment efficiency of rivastigmine hydrogen tartrate (RHT) nanostructured lipid carriers (NLCs). Methods: The RHT-loaded NLC was prepared by the modified solvent emulsification-diffusion method. The independent variables selected for Plackett–Burman design were drug: lipid ratio, solid lipid/liquid lipid (S/L) ratio, concentration Ryoto sugar ester (%w/v), the concentration of poloxamer 188 (%w/v), sonication time (min), sonication amplitude, and stirring time (h). Results: The R2 value for the particle size equation was 86.16%. p value was (<0.05) 0.048 in case of sonication time. In case of entrapment efficiency, the R2 value was 87.12%. The p value (p<0.05) for S/L ratio and the Ryoto sugar (% w/v) was 0.028 and 0.042, respectively. Conclusion: It can be concluded that sonication time has a significant effect on particle size, whereas S/L ratio and Ryoto sugar ester concentration have a significant effect on entrapment efficiency

    QUANTIFICATION USING ULTRAVIOLET SPECTROSCOPY METHOD AND IN VITRO STABILITY STUDY OF NANOVESICULAR SYSTEM CONTAINING PHYTIC ACID

    Get PDF
    Objective: The quantification of drug and stability of nanoparticulate delivery systems is one of the major apprehensions in biomedical applications. The present research work was attempted to quantify phytic acid by utilizing ultraviolet (UV) spectroscopy method and to evaluate the stability of nanovesicular (niosomes) system containing phytic acid.Methods: Niosomes containing phytic acid were developed by thin-film hydration method. Nanoformulation was subjected to stability testing as per the International Council for Harmonisation (ICH) guidelines. The formulation was stored at 30°C±2°C and 65%±5% RH, samples were withdrawn at 15th, 30th, 60th, 90th, 120th, and 180th day of analysis and examined for the integrity of vesicular/particle size, polydispersity index, zeta potential, and percent encapsulation efficiency.Results: Prepared nanoformulation displayed a straight line (y=mx+c) equation of y=−0.0309x+1.0413. Optimized batch of niosomes, which was prepared including dicetylphosphate showed zeta potential value of −36±0.36. Stability study showed that prepared niosomal formulation was stable up to 180 days at room temperature.Conclusion: Findings of the current research work suggested that UV spectroscopy method can be effectively used for the quantification of phytic acid and niosomal formulation of phytic acid. The formulation was found to be stable as per the ICH guidelines for stability testing

    Production of Intermediate or Medium Carbon Ferro Chrome at FACOR

    Get PDF
    FACOR has foreseen the need to develop the intermediate carbon ferro chrome alloy to meet the demands of alloy and stainless steel manufacturers.The paper describes the decarbonisation of liquid high carbon ferro chrome in. an AOD convertor with respect to : (a) Theoretical aspects and fundamentals, (b) Plant and equipment, (c) Process of making intermediate carbon ferro chromium., (d) Advantages of the processto improve the quality with respect to titanium, silicon, hydrogen and nitrogen in intermediate carbon ferro chromium

    Impaired endogenous fibrinolysis at high shear using a point-of-care test in STEMI is associated with alterations in clot architecture

    Get PDF
    © The Author(s) 2019Impaired endogenous fibrinolysis is an adverse prognostic biomarker in acute coronary syndrome (ACS). Abnormally dense in vitro fibrin thrombi have been demonstrated in ACS patients and related to hypofibrinolysis using cumbersome, laboratory-based methods. We aimed to assess endogenous fibrinolysis using a point-of-care technique and relate this to clot architecture. From patients with ST-segment elevation myocardial infarction (STEMI), venous blood was drawn immediately on arrival to assess thrombotic status. Blood was assessed using the point-of-care Global Thrombosis Test which measures occlusive thrombus formation under high shear and subsequently endogenous fibrinolysis (lysis time, LT). Two samples per patient were run in parallel. In one channel, the measurement was allowed to proceed as normal. In the other, after occlusion, thrombus was extracted, washed, fixed in glutaraldehyde, dried, sputter-coated, and assessed using scanning electron microscope. Endogenous fibrinolysis was strongly associated fibrin fibre thickness (p = 0.0001). As LT increased (less efficient fibrinolysis), the fibrin network of the thrombus was significantly more compact and dense, with thinner fibrin fibres and smaller gaps. Fibrin fibre thickness correlated inversely with LT (r = - 0.89, p = 0.001). Adverse clot architecture in vitro is directly related to impaired endogenous fibrinolysis using a relatively new point-of-care technique in patients with STEMI. This may transform the relevance of fibrin clot architecture from an off-line laboratory association to being directly relevant to endogenous fibrinolysis at the patient bedside, which could be used as a near-patient test to guide prognosis and assess the effect of treatment.Peer reviewedFinal Published versio

    Biaxial Flexural Strength and Estimation of Size on the Strength Properties of FRP Composites

    Get PDF
    Fibre reinforced plastics (FRP) are widely used as structural materials. For designing structural components, a designer is provided with data based on unidirectional testing. But in real structural applications the component is subjected to multiaxial stress throughout the material. Hence a multiaxial test is a better gauge of the behaviour of FRP components in service. In the present paper a ring-on-ring method was adopted which produces biaxial flexural stress on the FRP specimen. Wubull's statistical weakest link theory was applied to standardize the complexity and to assess the reliability of the results
    • …
    corecore