419 research outputs found

    Polaronic distortion and vacancy-induced magnetism in MgO

    Full text link
    The electronic structure of the neutral and singly charged Mg vacancy in MgO is investigated using density functional theory. For both defects, semilocal exchange correlation functionals such as the local spin density approximation incorrectly predict a delocalized degenerate ground state. In contrast functionals that take strong correlation effects into account predict a localized solution, in agreement with spin resonance experiments. Our results, obtained with the HSE hybrid, atomic self-interaction corrected and LDA+U functionals, provide a number of constraints to the possibility of ferromagnetism in hole doped MgO

    Influence of quantum confinement on the ferromagnetism of (Ga,Mn)As diluted magnetic semiconductor

    Full text link
    We investigate the effect of quantum confinement on the ferromagnetism of diluted magnetic semiconductor Ga1x_{1-x}Mnx_xAs using a combination of tight-binding and density functional methods. We observe strong majority-spin Mn dd-As pp hybridization, as well as half metallic behavior, down to sizes as small as 20 \AA in diameter. Below this critical size, the doped holes are self-trapped by the Mn-sites, signalling both valence and electronic transitions. Our results imply that magnetically doped III-V nanoparticles will provide a medium for manipulating the electronic structure of dilute magnetic semiconductors while conserving the ferromagnetic properties and even enhancing it in certain size regime.Comment: 4 pages, 3 figure

    Ab-initio transport theory for digital ferromagnetic heterostructures

    Full text link
    MnAs/GaAs superlattices, made by δ\delta-doping GaAs with Mn, are known as digital ferromagnetic heterostructures. Here we present a theoretical density functional study of the electronic, magnetic and transport properties of such heterostructures. In the absence of intrinsic donors these systems show an half metallic density of states, with an exchange interaction much stronger than that of a random alloy with the same Mn concentration. {\it Ab initio} ballistic transport calculations show that the carriers with energies close to the Fermi energy are strongly confined within a few monolayers around the MnAs plane. This strong confinement is responsible for the large exchange coupling. Therefore the system can be described as a two dimensional half metal with large conductance in the MnAs plane and small conductance in the perpendicular direction

    Ab initio study of electron transport in dry poly(G)-poly(C) A-DNA strands

    Full text link
    The bias-dependent transport properties of short poly(G)-poly(C) A-DNA strands attached to Au electrodes are investigated with first principles electronic transport methods. By using the non- equilibrium Green's function approach combined with self-interaction corrected density functional theory, we calculate the fully self-consistent coherent I-V curve of various double-strand polymeric DNA fragments. We show that electronic wave-function localization, induced either by the native electrical dipole and/or by the electrostatic disorder originating from the first few water solvation layers, drastically suppresses the magnitude of the elastic conductance of A-DNA oligonucleotides. We then argue that electron transport through DNA is the result of sequence-specific short-range tunneling across a few bases combined with general diffusive/inelastic processes.Comment: 15 pages, 13 figures, 1 tabl
    corecore