26 research outputs found

    Opto-Acoustic Technique for Residual Stress Analysis

    Get PDF
    Residual stress analysis based on co-application of acoustic and optical techniques is discussed. Residual stress analysis is a long-standing and challenging problem in many fields of engineering. The fundamental complexity of the problem lies in the fact that a residual stress is locked into the material and therefore hidden inside the specimen. Thus, direct measurement of residual stress in a completely nondestructive fashion is especially difficult. One possible solution is to estimate residual stress from the change in the elastic constant of the material. Residual stress alters the interatomic distance significantly large that the elastic constant is considerably different from the nominal value. From the change in the elastic constant and knowledge of the interatomic potential, it is possible to estimate the residual stress. This acoustic technique (acoustoelasticity) evaluates the elastic modulus of the specimen via acoustic velocity measurement. It is capable of determining the elastic modulus absolutely, but it is a single-point measurement. The optical technique (electronic speckle pattern interferometry, ESPI) yields full-field, two-dimensional strain maps, but it requires an external load to the specimen. Co-application of the two techniques compensates each other鈥檚 shortfalls

    Residual Stress Analysis Based on Acoustic and Optical Methods

    No full text
    Co-application of acoustoelasticity and optical interferometry to residual stress analysis is discussed. The underlying idea is to combine the advantages of both methods. Acoustoelasticity is capable of evaluating a residual stress absolutely but it is a single point measurement. Optical interferometry is able to measure deformation yielding two-dimensional, full-field data, but it is not suitable for absolute evaluation of residual stresses. By theoretically relating the deformation data to residual stresses, and calibrating it with absolute residual stress evaluated at a reference point, it is possible to measure residual stresses quantitatively, nondestructively and two-dimensionally. The feasibility of the idea has been tested with a butt-jointed dissimilar plate specimen. A steel plate 18.5 mm wide, 50 mm long and 3.37 mm thick is braze-jointed to a cemented carbide plate of the same dimension along the 18.5 mm-side. Acoustoelasticity evaluates the elastic modulus at reference points via acoustic velocity measurement. A tensile load is applied to the specimen at a constant pulling rate in a stress range substantially lower than the yield stress. Optical interferometry measures the resulting acceleration field. Based on the theory of harmonic oscillation, the acceleration field is correlated to compressive and tensile residual stresses qualitatively. The acoustic and optical results show reasonable agreement in the compressive and tensile residual stresses, indicating the feasibility of the idea

    Deformation and fracture of solid-state materials: field theoretical approach and engineering applications

    No full text
    This book introduces a comprehensive theory of deformation and fracture to engineers and applied scientists. The author explains the gist of local symmetry (gauge invariance) intuitively so that engineers and applied physicists can digest it easily, rather than describing physical or mathematical details of the principle. Applications of the theory to practical engineering are also described, such as nondestructive testing, in particular, with the use of an optical interferometric technique called ESPI (Electronic Speckle-Pattern Interferometry). The book provides information on how to apply physical concepts to engineering applications. This book also: 路聽聽聽聽聽聽聽聽 Describes a highly original way to reveal loading hysteresis of a given specimen 路聽聽聽聽聽聽聽聽 Presents a fundamentally new approach to deformation and fracture, which offers potential for new applications 路聽聽聽聽聽聽聽聽 Introduces the unique application of Electric Speckle-Pattern Interferometry鈥攔eading fringe patterns to connect them to the current deformation status 路聽聽聽聽聽聽聽聽 Details engineering applications of gauge theory 路聽聽聽聽聽聽聽聽 Visualizes otherwise abstract concepts of local symmetry and gauge fiel

    Opto-Acoustic Method for the Characterization of Thin-Film Adhesion

    No full text
    The elastic property of the film-substrate interface of thin-film systems is characterized with an opto-acoustic method. The thin-film specimens are oscillated with an acoustic transducer at audible frequencies, and the resultant harmonic response of the film surface is analyzed with optical interferometry. Polystyrene, Ti, Ti-Au and Ti-Pt films coated on the same silicon substrate are tested. For each film material, a pair of specimens is prepared; one is coated on a silicon substrate after the surface is treated with plasma bombardment, and the other is coated on an identical silicon substrate without a treatment. Experiments indicate that both the surface-treated and untreated specimens of all film materials have resonance in the audible frequency range tested. The elastic constant of the interface corresponding to the observed resonance is found to be orders of magnitude lower than that of the film or substrate material. Observations of these resonance-like behaviors and the associated stiffness of the interface are discussed

    Detection of 10^( -21) strain of space-time with an optical interferometer

    No full text
    International audienceThe LIGO (Laser Interferometer for Gravitational-wave Observatory) gravitational wave detector is a Michelson interferometer designed to detect a strain of space-time on the order of 10^(-21). The first generation of LIGO detector (LIGO I detector) is now in full operation, experiencing the fourth science run. In this paper, the LIGO I detector and key techniques necessary to achieve such high sensitivity are outlined

    Early Detection of Damages Based on Comprehensive Theory of Deformation and Fracture

    No full text
    Numerical studies have been conducted based on the recently published Deformation Field Theory. Effects of pulling rates on displacement waves and volume expansion waves are analyzed in a finite element model (FEM) of a solid experiencing a uni-axial tensile load. Without relying on empirical data, the model鈥檚 numerical results demonstrate empirically known concepts that a fracture occurs more easily when the pulling rate is high, and the direction of external load is reversed

    Stress Dependence on Relaxation of Deformation Induced by Laser Spot Heating

    No full text
    This paper deals with a non-destructive analysis of residual stress through the visualization of deformation behaviors induced by a local spot heating. Deformation was applied to the surface of an aluminum alloy with an infrared spot laser. The heating process is non-contact, and the applied strain is reversible in the range of room temperature to approximately +10 °C. The specimen was initially pulled up to elastic tensile stress using a tensile test machine under the assumption that the material was subject to the tensile residual stress. The relaxation behaviors of the applied strain under tensile stress conditions were evaluated using contact and non-contact methods, i.e., two strain gauges (the contact method) and a two-dimensional electronic speckle pattern interferometer (non-contact method). The results are discussed based on the stress dependencies of the thermal expansion coefficient and the elasticity of the materials

    Nondestructive Evaluation of Solids Based on Deformation Wave Theory

    No full text
    The application of a recent field theory of deformation and fracture to nondestructive testing (NDT) is discussed. Based on the principle known as the symmetry of physical laws, the present field theory formulates all stages of deformation including the fracturing stage on the same theoretical basis. The formalism derives wave equations that govern the spatiotemporal characteristics of the differential displacement field of solids under deformation. The evolution from the elastic to the plastic stage of deformation is characterized by a transition from longitudinal (compression) wave to decaying longitudinal/transverse wave characteristics. The evolution from the plastic to the fracturing stage is characterized by transition from continuous wave to solitary wave characteristics. Further, the evolution from the pre-fracturing to the final fracturing stage is characterized by transition from the traveling solitary wave to stationary solitary wave characteristics. In accordance with these transitions, the criterion for deformation stage is defined as specific spatiotemporal characteristics of the differential displacement field. The optical interferometric technique, known as Electronic Speckle-Pattern Interferometry (ESPI), is discussed as an experimental tool to visualize those wave characteristics and the associated deformation-stage criteria. The wave equations are numerically solved for the elastoplastic stages, and the resultant spatiotemporal behavior of the differential displacement field is compared with the experimental results obtained by ESPI. Agreement between the experimental and numerical results validates the present methodology at least for the elastoplastic stages. The solitary wave characteristics in the fracturing stages is discussed based on the experimental results and dislocation theory
    corecore