75 research outputs found

    Electronic Transport in Two-Dimensional Materials

    Full text link
    Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, since prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport including bandstructure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.Comment: 48 pages, 8 figures, Annual Reviews of Physical Chemistr

    Characterizing Voltage Contrast in Photoelectron Emission Microscopy

    Full text link
    A non-destructive technique for obtaining voltage contrast information with photoelectron emission microscopy (PEEM) is described. Samples consisting of electrically isolated metal lines were used to quantify voltage contrast in PEEM. The voltage contrast behavior is characterized by comparing measured voltage contrast with calculated voltage contrast from two electrostatic models. Measured voltage contrast was found to agree closely with the calculated voltage contrast, demonstrating that voltage contrast in PEEM can be used to probe local voltage information in microelectronic devices in a non-intrusive fashion.Comment: 26 pages, 8 figure

    Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing

    Full text link
    In the last three decades, zero-dimensional, one-dimensional, and two-dimensional carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and graphene, respectively) have attracted significant attention from the scientific community due to their unique electronic, optical, thermal, mechanical, and chemical properties. While early work showed that these properties could enable high performance in selected applications, issues surrounding structural inhomogeneity and imprecise assembly have impeded robust and reliable implementation of carbon nanomaterials in widespread technologies. However, with recent advances in synthesis, sorting, and assembly techniques, carbon nanomaterials are experiencing renewed interest as the basis of numerous scalable technologies. Here, we present an extensive review of carbon nanomaterials in electronic, optoelectronic, photovoltaic, and sensing devices with a particular focus on the latest examples based on the highest purity samples. Specific attention is devoted to each class of carbon nanomaterial, thereby allowing comparative analysis of the suitability of fullerenes, carbon nanotubes, and graphene for each application area. In this manner, this article will provide guidance to future application developers and also articulate the remaining research challenges confronting this field.Comment: Review article, 15 figure

    Gate-tunable memristors from monolayer MoS2

    Full text link
    We report here gate-tunable memristors based on monolayer MoS2 grown by chemical vapor deposition (CVD). These memristors are fabricated in a field-effect geometry with the channel consisting of polycrystalline MoS2 films with grain sizes of 3-5 um. The device characteristics show switching ratios up to 500, with the resistance in individual states being continuously gate-tunable by over three orders of magnitude. The resistive switching results from dynamically varying threshold voltage and Schottky barrier heights, whose underlying physical mechanism appears to be vacancy migration and/or charge trapping. Top-gated devices achieve reversible tuning of the threshold voltage, with potential utility in non-volatile memory or neuromorphic architectures

    Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy

    Full text link
    The mechanisms underlying the intrinsic photoresponse of few-layer (FL) molybdenum disulphide (MoS2) field-effect transistors are investigated via scanning photocurrent microscopy. We attribute the locally enhanced photocurrent to band-bending assisted separation of photoexcited carriers at the MoS2/Au interface. The wavelength-dependent photocurrents of few layer MoS2 transistors qualitatively follow the optical absorption spectra of MoS2, providing direct evidence of interband photoexcitation. Time and spectrally resolved photocurrent measurements at varying external electric fields and carrier concentrations establish that drift-diffusion currents dominate photothermoelectric currents in devices under bias.Comment: 4 figure letter + supporting information. Journal of Physical Chemistry Letters (2013

    Low Frequency Electronic Noise in Single-Layer MoS2 Transistors

    Full text link
    Ubiquitous low frequency 1/f noise can be a limiting factor in the performance and application of nanoscale devices. Here, we quantitatively investigate low frequency electronic noise in single-layer transition metal dichalcogenide MoS2 field-effect transistors. The measured 1/f noise can be explained by an empirical formulation of mobility fluctuations with the Hooge parameter ranging between 0.005 and 2.0 in vacuum (< 10-5 Torr). The field-effect mobility decreased and the noise amplitude increased by an order of magnitude in ambient conditions, revealing the significant influence of atmospheric adsorbates on charge transport. In addition, single Lorentzian generation-recombination noise was observed to increase by an order of magnitude as the devices were cooled from 300 K to 6.5 K.Comment: Nano Letters (2013

    Low Frequency Carrier Kinetics in Perovskite Solar Cells

    Full text link
    Hybrid organic-inorganic halide perovskite solar cells have emerged as leading candidates for third-generation photovoltaic technology. Despite the rapid improvement in power conversion efficiency (PCE) for perovskite solar cells in recent years, the low-frequency carrier kinetics that underlie practical roadblocks such as hysteresis and degradation remain relatively poorly understood. In an effort to bridge this knowledge gap, we perform here correlated low-frequency noise (LFN) and impedance spectroscopy (IS) characterization that elucidates carrier kinetics in operating perovskite solar cells. Specifically, we focus on planar cell geometries with a SnO2 electron transport layer and two different hole transport layers, namely, poly(triarylamine) (PTAA) and Spiro-OMeTAD. PTAA and Sprio-OMeTAD cells with moderate PCEs of 5 to 12 percent possess a Lorentzian feature at 200 Hz in LFN measurements that corresponds to a crossover from electrode to dielectric polarization. In comparison, Spiro-OMeTAD cells with high PCEs (15 percent) show four orders of magnitude lower LFN amplitude and are accompanied by a cyclostationary process. Through a systematic study of more than a dozen solar cells, we establish a correlation with noise amplitude, power conversion efficiency, and fill factor. Overall, this work establishes correlated LFN and IS as an effective methodology for quantifying low frequency carrier kinetics in perovskite solar cells, thereby providing new physical insights that can rationally guide ongoing efforts to improve device performance, reproducibility, and stability

    Correlated In-Situ Low-Frequency Noise and Impedance Spectroscopy Reveal Recombination Dynamics in Organic Solar Cells using Fullerene and Non-Fullerene Acceptors

    Full text link
    Non-fullerene acceptors based on perylenediimides (PDIs) have garnered significant interest as an alternative to fullerene acceptors in organic photovoltaics (OPVs), but their charge transport phenomena are not well understood, especially in bulk heterojunctions (BHJs). Here, we investigate charge transport and current fluctuations by performing correlated low-frequency noise and impedance spectroscopy measurements on two BHJ OPV systems, one employing a fullerene acceptor and the other employing a dimeric PDI acceptor. In the dark, these measurements reveal that PDI-based OPVs have a greater degree of recombination in comparison to fullerene-based OPVs. Furthermore, for the first time in organic solar cells, 1/f noise data are fit to the Kleinpenning model to reveal underlying current fluctuations in different transport regimes. Under illumination, 1/f noise increases by approximately four orders of magnitude for the fullerene-based OPVs and three orders of magnitude for the PDI-based OPVs. An inverse correlation is also observed between noise spectral density and power conversion efficiency. Overall, these results show that low-frequency noise spectroscopy is an effective in-situ diagnostic tool to assess charge transport in emerging photovoltaic materials, thereby providing quantitative guidance for the design of next-generation solar cell materials and technologies.Comment: 37 pages, 7 figure

    Extrinsic and Intrinsic Photoresponse in Monodisperse Carbon Nanotube Thin Film Transistors

    Full text link
    Spectroscopic, time-resolved scanning photocurrent microscopy is shown to distinguish the intrinsic photoresponse of monodisperse semiconducting (99%) single-walled carbon nanotubes (SWCNTs) from the extrinsic photoresponse of the substrate. A persistent positive photocurrent induced by near-IR excitation is attributed to the generation of free carriers by inter-band excitation in SWCNTs. For shorter excitation wavelengths, absorption by the Si substrate generates two types of photocurrent: a transient positive photoresponse, identified as a displacement current, and a persistent negative photocurrent that arises from photogating of the SWCNT thin film

    Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides

    Full text link
    With advances in exfoliation and synthetic techniques, atomically thin films of semiconducting transition metal dichalcogenides have recently been isolated and characterized. Their two-dimensional structure, coupled with a direct band gap in the visible portion of the electromagnetic spectrum, suggests suitability for digital electronics and optoelectronics. Towards that end, several classes of high-performance devices have been reported along with significant progress in understanding their physical properties. Here, we present a review of the architecture, operating principles, and physics of electronic and optoelectronic devices based on ultrathin transition metal dichalcogenide semiconductors. By critically assessing and comparing the performance of these devices with competing technologies, the merits and shortcomings of this emerging class of electronic materials are identified, thereby providing a roadmap for future development.Comment: Review article, 10 figures. ACS Nano, 2014, Article ASA
    corecore