25 research outputs found
Frequent 4EBP1 Amplification Induces Synthetic Dependence on FGFR Signaling in Cancer
Simple Summary Our work establishes that amplification of 4EBP1, as a part of Chr. 8p11, creates a synthetic dependency on FGFR1 signaling in cancer. 4EBP1 is phosphorylated by FGFR1 and PI3K signaling, and accordingly cancer with 4EBP1-FGFR1 amplification is more sensitive to FGFR1 and PI3K inhibition due to inhibition of 4EBP1 phosphorylation. Moreover, we characterize the translational targets of 4EBP1 and identify that 4EBP1 specifically regulates the translation of genes involved in insulin signaling, glucose metabolism, and the inositol pathway that plays a role in cancer progression. The eIF4E translation initiation factor has oncogenic properties and concordantly, the inhibitory eIF4E-binding protein (4EBP1) is considered a tumor suppressor. The exact molecular effects of 4EBP1 activation in cancer are still unknown. Surprisingly, 4EBP1 is a target of genomic copy number gains (Chr. 8p11) in breast and lung cancer. We noticed that 4EBP1 gains are genetically linked to gains in neighboring genes, including WHSC1L1 and FGFR1. Our results show that FGFR1 gains act to attenuate the function of 4EBP1 via PI3K-mediated phosphorylation at Thr37/46, Ser65, and Thr70 sites. This implies that not 4EBP1 but instead FGFR1 is the genetic target of Chr. 8p11 gains in breast and lung cancer. Accordingly, these tumors show increased sensitivity to FGFR1 and PI3K inhibition, and this is a therapeutic vulnerability through restoring the tumor-suppressive function of 4EBP1. Ribosome profiling reveals genes involved in insulin signaling, glucose metabolism, and the inositol pathway to be the relevant translational targets of 4EBP1. These mRNAs are among the top 200 translation targets and are highly enriched for structure and sequence motifs in their 5 ' UTR, which depends on the 4EBP1-EIF4E activity. In summary, we identified the translational targets of 4EBP1-EIF4E that facilitate the tumor suppressor function of 4EBP1 in cancer
A Re-Examination of Global Suppression of RNA Interference by HIV-1
The nature of the interaction between replicating HIV-1 and the cellular RNAi pathway has been controversial, but it is clear that it can be complex and multifaceted. It has been proposed that the interaction is bi-directional, whereby cellular silencing pathways can restrict HIV-1 replication, and in turn, HIV-1 can suppress silencing pathways. Overall suppression of RNAi has been suggested to occur via direct binding and inhibition of Dicer by the HIV-1 Tat protein or through sequestration of TRBP, a Dicer co-factor, by the structured TAR element of HIV-1 transcripts. The role of Tat as an inhibitor of Dicer has been questioned and our results support and extend the conclusion that Tat does not inhibit RNAi that is mediated by either exogenous or endogenous miRNAs. Similarly, we find no suppression of silencing pathways in cells with replicating virus, suggesting that viral products such as the TAR RNA elements also do not reduce the efficacy of cellular RNA silencing. However, knockdown of Dicer does allow increased viral replication and this occurs at a post-transcriptional level. These results support the idea that although individual miRNAs can act to restrict HIV-1 replication, the virus does not counter these effects through a global suppression of RNAi synthesis or processing
Expression of interfering RNAs from an HIV-1 Tat-inducible chimeric promoter
The therapeutic value of antiviral interfering RNAs could be improved by technologies that limit their expression to the infected cell population. The HIV-1 Tat-inducible viral LTR and LTR-containing chimeric promoters have previously been used to drive expression of antiviral RNAs and proteins directed against HIV-1. Here, we characterize an alternative promoter, consisting of a chicken beta-actin core promoter fused to the viral TAR element, for the conditional expression of interfering RNAs. This promoter, that we refer to as the CK-TAR promoter, can induce levels of silencing comparable to the viral LTR in response to Tat produced from co-transfected plasmids or during viral replication. While the CK-TAR promoter shows a modest level of basal activity, similar to the viral LTR, it is less responsive to the extracellular stimuli tested including LPS. TNF alpha, and PMA. The CK-TAR promoter is an alternative Tat-inducible promoter with the potential to minimize the risk of vector mobilization and to drive polycistronic expression of interfering RNAs. (C) 2010 Elsevier B.V. All rights reserved
The Cellular TAR RNA Binding Protein, TRBP, Promotes HIV-1 Replication Primarily by Inhibiting the Activation of Double-Stranded RNA-Dependent Kinase PKR▿
The TAR RNA binding protein, TRBP, is a cellular double-stranded RNA (dsRNA) binding protein that can promote the replication of HIV-1 through interactions with the viral TAR element as well as with cellular proteins that affect the efficiency of translation of viral transcripts. The structured TAR element, present on all viral transcripts, can impede efficient translation either by sterically blocking access of translation initiation factors to the 5′-cap or by activating the dsRNA-dependent kinase, PKR. Several mechanisms by which TRBP can facilitate translation of viral transcripts have been proposed, including the binding and unwinding of TAR and the suppression of PKR activation. Further, TRBP has been identified as a cofactor of Dicer in the processing of microRNAs (miRNAs), and sequestration of TRBP by TAR in infected cells has been proposed as a viral countermeasure to potential host cell RNA interference-based antiviral activities. Here, we have addressed the relative importance of these various roles for TRBP in HIV-1 replication. Using Jurkat T cells, primary human CD4+ T cells, and additional cultured cell lines, we show that depletion of TRBP has no effect on viral replication when PKR activation is otherwise blocked. Moreover, the presence of TAR-containing mRNAs does not affect the efficacy of cellular miRNA silencing pathways. These results establish that TRBP, when expressed at physiological levels, promotes HIV-1 replication mainly by suppressing the PKR-mediated antiviral response, while its contribution to HIV-1 replication through PKR-independent pathways is minimal
RNA silencing as a cellular defense against HIV‐1 infection: progress and issues
MicroRNAs (miRNAs) are known to have a role in gene regulation that is closely integrated into the pathways that control virtually all fundamental cell processes of growth, differentiation, metabolism, and death. Whether silencing RNAs and the cellular pathways that generate them are also used in antiviral defense in higher eukaryotes, as they are in plants and lower eukaryotes, has been the subject of much study. Results to date point to a complex interplay between viruses and vertebrate host cells that can vary considerably among different viruses. Here, we review current knowledge regarding interactions between HIV‐1 and host cell RNA silencing mechanisms. Important questions in this field remain unresolved, including whether HIV‐1 itself encodes small silencing RNAs that might either promote or repress its replication, whether host cell miRNAs can directly target viral transcripts or can alter the course of infection indirectly through effects on cellular genes necessary for viral replication, and whether HIV‐1 produces proteins or RNAs that suppress the host‐silencing pathway. We summarize evidence and controversies related to the potential role of RNA silencing pathways as a defense against HIV‐1 infection.—Sanghvi, V. R., Steel, L. F. RNA silencing as a cellular defense against HIV‐1 infection: progress and issues. FASEB J. 26, 3937–3945 (2012). www.fasebj.or
Recommended from our members
Abstract 878: Frequent 4EBP1 amplification induces synthetic dependence on FGFR signaling in cancer
Abstract The eIF4E translation initiation factor has oncogenic properties and concordantly, the inhibitory eIF4E-binding protein (4EBP1) is considered a tumor suppressor. The exact molecular effects of 4EBP1 activation in cancer are still unknown. Surprisingly, 4EBP1 is a target of genomic copy number gains (Chr. 8p11) in breast and lung cancer. We notice that 4EBP1 gains are genetically linked to gains in neighboring genes including WHSC1L1 and FGFR1. Our results show that FGFR1 gains act to attenuate the function of 4EBP1 via PI3K mediated phosphorylation at Thr37/46, Ser65, and Thr70 sites. This implies that not 4EBP1 but instead FGFR1 is the genetic target of Chr. 8p11 gains in breast and lung cancer. Accordingly, these tumors show increased sensitivity to FGFR1 and PI3K inhibition and this is a therapeutic vulnerability through restoring the tumor-suppressive function of 4EBP1. Ribosome profiling reveals genes involved in insulin signaling, glucose metabolism, and inositol pathway to be the relevant translational targets of 4EBP1. These mRNAs are among the top 200 translation targets and are highly enriched for structure and sequence motifs in their 5’UTR that depends on the 4EBP1-EIF4E activity. In summary, we identify the translational targets of 4EBP1-EIF4E that facilitate the tumor suppressor function of 4EBP1 in cancer. @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536870145 1107305727 0 0 415 0;}@font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-536859905 -1073732485 9 0 511 0;}p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0in; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}.MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}div.WordSection1 {page:WordSection1;} Citation Format: Kamini Singh, Prathibha Mohan, Viraj R. Sanghvi, Giovanni Ciriello, Nathalie Lailler, Elisa de Stanchina, Hans-Guido Wendel. Frequent 4EBP1 amplification induces synthetic dependence on FGFR signaling in cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 878
Recommended from our members
Interplay of RAP2 GTPase and the cytoskeleton in Hippo pathway regulation
The Hippo signaling is instrumental in regulating organ size, regeneration, and carcinogenesis. The cytoskeleton emerges as a primary Hippo signaling modulator. Its structural alterations in response to environmental and intrinsic stimuli control Hippo kinase cascade activity. However, the precise mechanisms underlying the cytoskeleton regulation of Hippo signaling are not fully understood. RAP2 GTPase is known to mediate the mechanoresponses of Hippo signaling
via
activating the core Hippo kinases LATS1/2 through MAP4Ks and MST1/2. Here we show the pivotal role of the reciprocal regulation between RAP2 GTPase and the cytoskeleton in Hippo signaling. RAP2 deletion undermines the responses of the Hippo pathway to external cues tied to RhoA GTPase inhibition and actin cytoskeleton remodeling, such as energy stress and serum deprivtion. Notably, RhoA inhibitors and actin disruptors fail to activate LATS1/2 effectively in RAP2-deficient cells. RNA sequencing highlighted differential regulation of both actin and microtubule networks by RAP2 gene deletion. Consistently, Taxol, a microtubule-stabilizing agent, was less effective in activating LATS1/2 and inhibiting cell growth in RAP2 and MAP4K4/6/7 knockout cells. In summary, our findings position RAP2 as a central integrator of cytoskeletal signals for Hippo signaling, which offers new avenues for understanding Hippo regulation and therapeutic interventions in Hippo-impaired cancers
Recommended from our members
Interplay of RAP2 GTPase and the cytoskeleton in Hippo pathway regulation
The Hippo signaling is instrumental in regulating organ size, regeneration, and carcinogenesis. The cytoskeleton emerges as a primary Hippo signaling modulator. Its structural alterations in response to environmental and intrinsic stimuli control Hippo signaling pathway activity. However, the precise mechanisms underlying the cytoskeleton regulation of Hippo signaling are not fully understood. RAP2 GTPase is known to mediate the mechanoresponses of Hippo signaling via activating the core Hippo kinases LATS1/2 through MAP4Ks and MST1/2. Here we show the pivotal role of the reciprocal regulation between RAP2 GTPase and the cytoskeleton in Hippo signaling. RAP2 deletion undermines the responses of the Hippo pathway to external cues tied to RhoA GTPase inhibition and actin cytoskeleton remodeling, such as energy stress and serum deprivation. Notably, RhoA inhibitors and actin disruptors fail to activate LATS1/2 effectively in RAP2-deficient cells. RNA sequencing highlighted differential regulation of both actin and microtubule networks by RAP2 gene deletion. Consistently, Taxol, a microtubule-stabilizing agent, was less effective in activating LATS1/2 and inhibiting cell growth in RAP2 and MAP4K4/6/7 knockout cells. In summary, our findings position RAP2 as a central integrator of cytoskeletal signals for Hippo signaling, which offers new avenues for understanding Hippo regulation and therapeutic interventions in Hippo-impaired cancers