472 research outputs found

    Enhanced moments of Eu in single crystals of the metallic helical antiferromagnet EuCo2 yAs2

    Get PDF
    The compound EuCo{2-y}As2 with the tetragonal ThCr2Si2 structure is known to contain Eu{+2} ions with spin S = 7/2 that order below a temperature TN = 47 K into an antiferromagnetic (AFM) proper helical structure with the ordered moments aligned in the tetragonal ab plane, perpendicular to the helix axis along the c axis, with no contribution from the Co atoms. Here we carry out a detailed investigation of the properties of single crystals. Enhanced ordered and effective moments of the Eu spins are found in most of our crystals. Electronic structure calculations indicate that the enhanced moments arise from polarization of the d bands, as occurs in ferromagnetic Gd metal. Electrical resistivity measurements indicate metallic behavior. The low-field in-plane magnetic susceptibilities chi{ab}(T < TN) for several crystals are reported that are fitted well by unified molecular field theory (MFT), and the Eu-Eu exchange interactions Jij are extracted from the fits. High-field magnetization M data for magnetic fields H||ab reveal what appears to be a first-order spin-flop transition followed at higher field by a second-order metamagnetic transition of unknown origin, and then by another second-order transition to the paramagnetic (PM) state. For H||c, the magnetization shows only a second-order transition from the canted AFM to the PM state, as expected. The critical fields for the AFM to PM transition are in approximate agreement with the predictions of MFT. Heat capacity Cp measurements in zero and high H are reported. Phase diagrams for H||c and H||ab versus T are constructed from the high-field M(H,T) and Cp(H,T) measurements. The magnetic part Cmag(T, H = 0) of Cp(T, H = 0) is extracted and is fitted rather well below TN by MFT, although dynamic short-range AFM order is apparent in Cmag(T) up to about 70 K, where the molar entropy attains its high-T limit of R ln8.Comment: 29 pages, 30 figures including 62 subfigures, 8 tables, 84 reference

    A Study of Qualitative Correlations Between Crucial Bio-markers and the Optimal Drug Regimen of Type-I Lepra Reaction: A Deterministic Approach

    Full text link
    Mycobacterium leprae is a bacteria that causes the disease Leprosy (Hansen's disease), which is a neglected tropical disease. More than 200000 cases are being reported per year world wide. This disease leads to a chronic stage known as Lepra reaction that majorly causes nerve damage of peripheral nervous system leading to loss of organs. The early detection of this Lepra reaction through the level of bio-markers can prevent this reaction occurring and the further disabilities. Motivated by this, we frame a mathematical model considering the pathogenesis of leprosy and the chemical pathways involved in Lepra reactions. The model incorporates the dynamics of the susceptible schwann cells, infected schwann cells and the bacterial load and the concentration levels of the bio markers IFN−γIFN-\gamma, TNF−αTNF-\alpha, IL−10IL-10, IL−12IL-12, IL−15IL-15 and IL−17IL-17. We consider a nine compartment optimal control problem considering the drugs used in Multi Drug Therapy (MDT) as controls. We validate the model using 2D - heat plots. We study the correlation between the bio-markers levels and drugs in MDT and propose an optimal drug regimen through these optimal control studies. We use the Newton's Gradient Method for the optimal control studies

    Effective One-Dimensional Coupling in the Highly-Frustrated Square-Lattice Itinerant Magnet CaCo2−y_{\mathrm{2}-y}As2_{2}

    Get PDF
    Inelastic neutron scattering measurements on the itinerant antiferromagnet (AFM) CaCo2−y_{\mathrm{2}-y}As2_{2} at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. These results are shown to arise from near-perfect bond frustration within the J1J_1-J2J_2 Heisenberg model on a square lattice with ferromagnetic J1J_1, and hence indicate that the extensive previous experimental and theoretical study of the J1J_1-J2J_2 Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems

    Magnetic phase transitions in Eu(Co1-xNix)(2-y)As-2 single crystals

    Get PDF
    The effects of Ni doping in Eu(Co1-xNix)(2-y)As-2 single crystals with x = 0 to 1 grown out of self-flux are investigated via crystallographic, electronic transport, magnetic, and thermal measurements. All compositions adopt the body-centered-tetragonal ThCr2Si2 structure with space group I4/mmm. We also find 3%-4% of randomly distributed vacancies on the Co/Ni site. Anisotropic magnetic susceptibility chi(alpha) (alpha = ab, c) data versus temperature T show clear signatures of an antiferromagnetic (AFM) c-axis helix structure associated with the Eu+2 spins 7/2 for x = 0 and 1 as previously reported. The chi(alpha)(T) data for x = 0.03 and 0.10 suggest an anomalous 2q magnetic structure containing two helix axes along the c axis and in the ab plane, respectively, whereas for x = 0.75 and 0.82 a c-axis helix is inferred as previously found for x = 0 and 1. At intermediate compositions x = 0.2, 0.32, 0.42, 0.54, and 0.65, a magnetic structure with a large ferromagnetic (FM) c-axis component is found from magnetization versus field isotherms, suggested to be an incommensurate FM c-axis cone structure associated with the Eu spins, which consists of both AFM and FM components. In addition, the chi(T) and heat capacity C-p(T) data for x = 0.2-0.65 indicate the occurrence of itinerant FM order associated with the Co/Ni atoms with Curie temperatures from 60 to 25 K, respectively. Electrical resistivity rho(T) measurements indicate metallic character for all compositions with abrupt increases in slope on cooling below the Eu AFM transition temperatures. In addition to this panoply of magnetic transitions, Eu-151 Mossbauer measurements indicate that ordering of the Eu moments proceeds via an incommensurate sine amplitude-modulated structure with additional transition temperatures associated with this effect
    • …
    corecore