26,466 research outputs found
Does breathing disturb arm to leg coordination in butterfly
International audienc
Evaluation of roughness lengths at the NSSL- WKY meteorological tower
Wind and temperature sensors installed on NSSL-WKY /Oklahoma City/ meteorological tower to evaluate roughness length
The Role of Starburst-AGN composites in Luminous Infrared Galaxy Mergers: Insights from the New Optical Classification Scheme
We investigate the fraction of starbursts, starburst-AGN composites,
Seyferts, and LINERs as a function of infrared luminosity (L_IR) and merger
progress for ~500 infrared-selected galaxies. Using the new optical
classifications afforded by the extremely large data set of the Sloan Digital
Sky Survey, we find that the fraction of LINERs in IR-selected samples is rare
(< 5%) compared with other spectral types. The lack of strong infrared emission
in LINERs is consistent with recent optical studies suggesting that LINERs
contain AGN with lower accretion rates than in Seyfert galaxies. Most
previously classified infrared-luminous LINERs are classified as starburst-AGN
composite galaxies in the new scheme. Starburst-AGN composites appear to
"bridge" the spectral evolution from starburst to AGN in ULIRGs. The relative
strength of the AGN versus starburst activity shows a significant increase at
high infrared luminosity. In ULIRGs (L_IR >10^12 L_odot), starburst-AGN
composite galaxies dominate at early--intermediate stages of the merger, and
AGN galaxies dominate during the final merger stages. Our results are
consistent with models for IR-luminous galaxies where mergers of gas-rich
spirals fuel both starburst and AGN, and where the AGN becomes increasingly
dominant during the final merger stages of the most luminous infrared objects.Comment: 30 pages, 19 figures, 10 tables, ApJ accepte
Updating the Farm Bill Safety Net in an Expanding Sea of Risk
Agricultural and Food Policy, Food Consumption/Nutrition/Food Safety, H10,
Chaos in cylindrical stadium billiards via a generic nonlinear mechanism
We describe conditions under which higher-dimensional billiard models in
bounded, convex regions are fully chaotic, generalizing the Bunimovich stadium
to dimensions above two. An example is a three-dimensional stadium bounded by a
cylinder and several planes; the combination of these elements may give rise to
defocusing, allowing large chaotic regions in phase space. By studying families
of marginally-stable periodic orbits that populate the residual part of phase
space, we identify conditions under which a nonlinear instability mechanism
arises in their vicinity. For particular geometries, this mechanism rather
induces stable nonlinear oscillations, including in the form of
whispering-gallery modes.Comment: 4 pages, 4 figure
Multi-Terabyte EIDE Disk Arrays running Linux RAID5
High-energy physics experiments are currently recording large amounts of data
and in a few years will be recording prodigious quantities of data. New methods
must be developed to handle this data and make analysis at universities
possible. Grid Computing is one method; however, the data must be cached at the
various Grid nodes. We examine some storage techniques that exploit recent
developments in commodity hardware. Disk arrays using RAID level 5 (RAID-5)
include both parity and striping. The striping improves access speed. The
parity protects data in the event of a single disk failure, but not in the case
of multiple disk failures.
We report on tests of dual-processor Linux Software RAID-5 arrays and
Hardware RAID-5 arrays using a 12-disk 3ware controller, in conjunction with
250 and 300 GB disks, for use in offline high-energy physics data analysis. The
price of IDE disks is now less than $1/GB. These RAID-5 disk arrays can be
scaled to sizes affordable to small institutions and used when fast random
access at low cost is important.Comment: Talk from the 2004 Computing in High Energy and Nuclear Physics
(CHEP04), Interlaken, Switzerland, 27th September - 1st October 2004, 4
pages, LaTeX, uses CHEP2004.cls. ID 47, Poster Session 2, Track
Spatial distribution and broad-band spectral characteristics of the diffuse X-ray background, 0.1 - 1.0 keV
Preliminary maps covering more than 85 percent of the sky are presented for three energy bands: the B band, the C band, and the M band. The study was undertaken to find evidence that most of the diffuse X-ray background at energies less than 1 keV is local to the galaxy and that it is most probably due to thermal radiation from a low density plasma which fills a substantial fraction of interstellar space. A preliminary analysis of the data is provided including a report that most of the B and C band flux has a common origin, probably in a 10 to the 6th power K region surrounding the Sun, and that most of the M band flux does not originate from the same material
Limits on soft X-ray flux from distant emission regions
The all-sky soft X-ray data of McCammon et al. and the new N sub H survey (Stark et al. was used to place limits on the amount of the soft X-ray diffuse background that can originate beyond the neutral gas of the galactic disk. The X-ray data for two regions of the sky near the galactic poles are shown to be uncorrelated with 21 cm column densities. Most of the observed x-ray flux must therefore originate on the near side of the most distant neutral gas. The results from these regions are consistent with X-ray emission from a locally isotropic, unabsorbed source, but require large variations in the emission of the local region over large angular scales
The soft X-ray diffuse background
Maps of the diffuse X-ray background intensity covering essentially the entire sky with approx. 7 deg spatial resolution are presented for seven energy bands. The data were obtained on a series of ten sounding rocket flights conducted over a seven-year period. The different nature of the spatial distributions in different bands implies at least three distinct origins for the diffuse X-rays, none of which is well-understood. At energies or approx. 2000 eV, an isotropic and presumably extraglalactic 500 and 1000 eV, an origin which is at least partially galactic seems called for. At energies 284 eV, the observed intensity is anticorrelated with neutral hydrogen column density, but we find it unlikely that this anticorrelation is simply due to absorption of an extragalactic or halo source
- …