8 research outputs found
Influencia de la postura del pie sobre la rigidez de la columna medial durante la marcha
Esta tesis se presenta como un compendio de publicaciones, y en ella se abordan diferentes estudios de caracterización de la dinámica de las articulaciones de la columna medial del pie (tobillo y articulaciones mediotarsiana y metatarsofalángica) con diferente índice postural. En primer lugar se analizan las diferencias entre pies normales, altamente pronados y altamente supinados mediante gráficos de evolución temporal de rotaciones y momentos articulares en los tres planos de movimiento. Asimismo, se proporcionan valores estadísticos para los parámetros descriptivos de dichas curvas, y a partir de ellos, para pies normales, se identifican patrones normales de marcha. Por otra parte, se identifican y comparan las sinergias cinemáticas y cinéticas en pies normales y altamente supinados, y se analizan las diferencias en sus evoluciones temporales. Finalmente, se estudia la rigidez articular dinámica a flexión durante la marcha en pies normales, altamente pronados y altamente supinados, identificando diferentes fases con rigidez aproximadamente constante. Se analiza la variabilidad de la rigidez en dichas fases, y en particular el efecto de la velocidad de marcha. Y se detallan las diferencias de rigidez dinámica entre los distintos tipos de pie.This thesis is presented as a compendium of publications, and it consists of different characterization studies of the dynamics of the joints of the medial column of the foot (ankle, midtarsal and metatarsophalangeal joints) with different postural indexes. First, the differences between normal, highly pronated and highly supinated feet are analyzed looking at the plots of joint rotations and moments vs time, in the three planes of movement. Statistical values are also provided for the descriptive parameters of these curves, and used afterwards to identify gait patterns for normal feet. On the other hand, kinematic and kinetic synergies are identified and compared in normal and highly supinated feet, and the differences in their temporal evolutions are analyzed. Finally, dynamic joint stiffness in the flexural plane is studied during gait in normal, highly pronated and highly supinated feet, having identified different phases with approximately constant stiffness. The variability of the stiffness in these phases, and in particular the effect of the walking speed, is also analyzed. And the differences of dynamic stiffness between the different types of foot are detailed.Programa de Doctorat en Tecnologies Industrials i Material
Kinetic and kinematic analysis of midfoot joints of healthy subjects during walking: Clinical considerations
Introducción: No existe todavía suficiente evidencia en estudios clínicos respecto al comportamiento
del mediopié en situaciones dinámicas como la marcha o la carrera. El presente estudio
pretende analizar el comportamiento mecánico de las articulaciones del mediopié mediante
un modelo multisegmental del pie, con especial atención a los momentos articulares y sus
repercusiones clínicas.
Sujetos y métodos: Se realizó un estudio computarizado de la marcha sobre 30 sujetos adultos
sanos (27,13
±
3,82 a˜nos) con un índice de postura del pie (FPI) neutro (entre 0 y +5). Se
estimaron los ángulos y momentos articulares externos en 3 dimensiones mediante un modelo
que considera 3 segmentos (antepié, retropié y hallux) y se analizó la evolución de dichas
variables durante la marcha sobre la articulación del mediopié (articulación que conecta antepié
y retropié) del pie derecho de todos los sujetos.
Resultados: Los mayores momentos articulares observados se dieron en el plano sagital en
flexión dorsal produciendo una tendencia al colapso o aplanamiento del pie durante la fase de
apoyo de la marcha. Los momentos articulares registrados en los planos frontal y transverso
fueron de una magnitud mucho menor que la observada en el plano sagital y de menor relevancia
clínica.
Discusión: El presente estudio aporta datos sobre el comportamiento mecánico de las articulaciones
del mediopié en una muestra de 30 sujetos sanos con un FPI neutro. Este estudio muestra
la
importancia
del
estrés
tensional
al
que
se
encuentran
sometidas
las
estructuras
blandas
plantares
durante
la
fase
de
apoyo
de
la
marcha.Introduction:
There
is
not
enough
evidence
in
form
of
clinical
studies
regarding
the
behavior
of
the
midfoot
joints
in
dynamic
situations
such
us
walking
or
running.
The
present
work
aims
to
study
the
mechanical
behavior
of
midfoot
joints
with
a
multisegmented
foot
model
with
special
interest
in
joint
moments
and
their
clinical
significance.
Subjects
and
methods:
A
computerized
3-dimensional
gait
study
was
performed
on
30
healthy
male
adult
subjects
(27.13
±
3.82
years)
with
a
neutral
Foot
Posture
Index
(FPI)
(from
0
to
+5)
during
walking.
Joint
angle
and
external
moments
were
estimated
with
a
multisegment
foot
model
that
considers
three
separate
segments
(forefoot,
rearfoot
and
hallux)
and
graphs
and
values
of
midfoot
joint
(joint
connecting
forefoot
to
rearfoot)
were
analyzed
for
the
right
foot
of
all
participants.
Results:
Highest
external
moments
were
observed
in
the
sagittal
plane
in
dorsiflexion
direction
which
tend
to
collapse
the
longitudinal
arch
during
the
stance
phase.
Moments
registered
in
frontal
and
transverse
planes
were
much
lower
than
those
observed
in
the
sagittal
plane
and
seemed
to
have
lower
clinical
relevance.
Discussion:
The
present
study
provides
data
about
the
mechanical
behavior
of
midfoot
joints
in
a
healthy
adult
population
with
a
neutral
FPI.
This
work
shows
that
plantar
soft
tissues
are
subjected
to
important
tensional
stress
during
the
stance
phase
of
walking
3D characterisation of the dynamics of foot joints of adults during walking. Gait pattern identification
A detailed description of the kinematics and kinetics of the ankle, midtarsal and metatarsophalangeal joints of the feet of a healthy adult male population during barefoot walking is provided. Plots of the angles and moments in each plane during the stance phase are reported, along with the mean and standard deviation values of 87 different parameters that characterise the 3D dynamics of the foot joints. These parameters were used to check for similarities between subjects through a hierarchical analysis that allowed three different gait patterns to be identified, most of the differences corresponding to the frontal and transverse planes
Effect of static foot posture on the dynamic stiffness of foot joints during walking
Background
The static foot posture has been related to the development of lower limb injuries.
Research question
This study aimed to investigate the dynamic stiffness of foot joints during gait in the sagittal plane to understand the role of the static foot posture in the development of injuries.
Methods
Seventy healthy adult male subjects with different static postures, assessed by the Foot Posture Index (FPI) (30 normal, 20 highly pronated and 20 highly supinated), were recruited. Kinematic and kinetic data were recorded using an optical motion capture system and a pressure platform, and dynamic stiffness at the different stages of the stance was calculated from the slopes of the linear regression on the flexion moment-angle curves. The effect of foot type on dynamic stiffness and on ranges of motion and moments was analysed using ANOVAs and post-hoc tests, and linear correlation between dynamic stiffness and FPI was also tested.
Results
Highly pronated feet showed a significantly smaller range of motion at the ankle and metatarsophalangeal joints and also a larger range of moments at the metatarsophalangeal joint than highly supinated feet. Dynamic stiffness during propulsion was significantly greater at all foot joints for highly pronated feet, with positive significant correlations with the squared FPI. Highly supinated feet showed greater dynamic stiffness than normal feet, although to a lesser extent. Highly pronated feet during normal gait experienced the greatest decrease in the dorsiflexor moments during propulsion, normal feet being the most balanced regarding work generated and absorbed.
Significance
Extreme static foot postures show greater dynamic stiffness during propulsion and greater absorbed work, which increases the risk of developing injuries. The data presented may be used when designing orthotics or prostheses, and also when planning surgery that modifies joint stiffness
Componentes principales aplicados al estudio de la dinámica del pie supinado y normal durante la marcha
Comunicación presentada en el XXI Congreso Nacional de Ingeniería Mecánica, celebrado en Elche en Noviembre de 2016.Las variaciones en el índice postural del pie (pronados, supinados) suelen asociarse con una
incorrecta función del miembro inferior que lo predispone a lesiones. El análisis riguroso de la
dinámica del pie es complejo, pues han de manejarse simultáneamente las evoluciones temporales
de ángulos y momentos durante la marcha en sus diferentes articulaciones, y en los tres planos de
movimiento. Por ello, los análisis comparativos que pueden encontrarse en la literatura se han
acometido sobre determinados parámetros específicos de la marcha, y no de forma sistemática.
Aunque la marcha es una actividad compleja, diferentes trabajos han puesto de manifiesto la
coordinación cinemática existente entre cadera, rodilla y tobillo mediante el uso del análisis de
componentes principales (ACP). Sin embargo, la coordinación de ángulos y momentos en las
articulaciones del pie durante la marcha ha sido poco explorada hasta ahora. En este trabajo se
propone el análisis sistemático de las diferencias en la dinámica de pies supinados frente a pies
normales, por aplicación de la reducción dimensional mediante el uso del ACP. Para ello se registró
la dinámica del tobillo y de las articulaciones mediotarsiana y metatarsofalángica de 30 sujetos con
pies normales y de 20 con pies supinados, mientras caminaban descalzos a lo largo de un pasillo
de 7 m. La aplicación de ACPs (valores propios> 1, rotación varimax) sobre los sujetos con pies
normales permitió identificar 3 componentes principales (CPs) explicando el 68% de la varianza
de los ángulos articulares, y 3 CPs explicando el 87% de la varianza de los momentos, reduciendo
las 18 variables temporales originales (9 ángulos y 9 momentos) a 6 factores. Las evoluciones
temporales de estos factores permitieron identificar un conjunto de parámetros que se proponen
para el análisis sistemático de la dinámica del pie durante la marcha. En el trabajo se presenta
cuáles de esos parámetros se ven afectados por el índice postural del pie (mediante ANOVAs), así
como las diferencias en la coordinación entre pies normales y supinados (comparando componentes
principales de ambos grupos de sujetos), y se discuten sus posibles repercusiones clínicas
Human Endometrial Side Population Cells Exhibit Genotypic, Phenotypic and Functional Features of Somatic Stem Cells
During reproductive life, the human endometrium undergoes around 480 cycles of growth, breakdown and regeneration should pregnancy not be achieved. This outstanding regenerative capacity is the basis for women's cycling and its dysfunction may be involved in the etiology of pathological disorders. Therefore, the human endometrial tissue must rely on a remarkable endometrial somatic stem cells (SSC) population. Here we explore the hypothesis that human endometrial side population (SP) cells correspond to somatic stem cells. We isolated, identified and characterized the SP corresponding to the stromal and epithelial compartments using endometrial SP genes signature, immunophenotyping and characteristic telomerase pattern. We analyzed the clonogenic activity of SP cells under hypoxic conditions and the differentiation capacity in vitro to adipogenic and osteogenic lineages. Finally, we demonstrated the functional capability of endometrial SP to develop human endometrium after subcutaneous injection in NOD-SCID mice. Briefly, SP cells of human endometrium from epithelial and stromal compartments display genotypic, phenotypic and functional features of SSC
Foot sole contact forces vs. ground contact forces to obtain foot joint moments for in-shoe gait-A preliminary study
In-shoe models are required to extend the clinical application of current multisegment kinetic models of the bare foot to study the effect of foot orthoses. Work to date has only addressed marker placement for reliable kinematic analyses. The purpose of this study is to address the difficulties of recording contact forces with available sensors. Ten participants walked 5 times wearing two different types of footwear by stepping on a pressure platform (ground contact forces) while wearing in-shoe pressure sensors (foot sole contact forces). Pressure data were segmented by considering contact cells' anteroposterior location, and were used to compute 3D moments at foot joints. The mean values and 95% confidence intervals were plotted for each device per shoe condition. The peak values and times of forces and moments were computed per participant and trial under each condition, and were compared using mixed-effect tests. Test-retest reliability was analyzed by means of intraclass correlation coefficients. The curve profiles from both devices were similar, with higher joint moments for the instrumented insoles at the metatarsophalangeal joint (~26%), which were lower at the ankle (~8%) and midtarsal (~15%) joints, although the differences were nonsignificant. Not considering frictional forces resulted in ~20% lower peaks at the ankle moments compared to previous studies, which employed force plates. The device affected both shoe conditions in the same way, which suggests the interchangeability of measuring joint moments with one or the other device. This hypothesis was reinforced by the intraclass correlation coefficients, which were higher for the peak values, although only moderate-to-good. In short, both considered alternatives have drawbacks. Only the instrumented in-soles provided direct information about foot contact forces, but it was incomplete (evidenced by the difference in ankle moments between devices). However, recording ground reaction forces offers the advantage of enabling the consideration of contact friction forces (using force plates in series, or combining a pressure platform and a force plate to estimate friction forces and torque), which are less invasive than instrumented insoles (which may affect subjects' gait)