568 research outputs found
AAV Biology, Infectivity and Therapeutic Use from Bench to Clinic
Adeno-associated virus (AAV) has been isolated from numerous vertebrate species since 1966. Besides its wide and promiscuous tropism, AAV infection does not result in considerable toxicity or pathogenicity and is capable of achieving adequate and long-term levels of gene transfer, especially following generation of the AAV recombinant variant: rAAV. Due to these properties, rAAV has gained special attention as a viral vector for gene therapy in the last decade. Currently, there are 130 clinical trials taking place worldwide for several diseases testing the safety and efficacy profiles of rAAV. During preclinical and clinical studies, several challenges have arisen in terms of reaching the full therapeutic potential of rAAV, such as efficient delivery of the virus in a targeted and specific manner to a desired tissue. Importantly, the development of immune responses towards the viral capsids poses an obstacle to rAAV applicability in the clinical setting. Numerous approaches have been developed in order to tailor an optimized therapeutic virus for treating specific diseases, including the use of different AAV serotypes or the creation of recombinant capsid variants with distinctive transduction and immunological profiles. This chapter reviews current information on rAAV clinical trials and the potential for combining rAAV platform with other technologies, such as induced pluripotent cells and gene editing
Cytoplasmic Trafficking, Endosomal Escape, and Perinuclear Accumulation of Adeno-Associated Virus Type 2 Particles Are Facilitated by Microtubule Network
Understanding adeno-associated virus (AAV) trafficking is critical to advance our knowledge of AAV biology and exploit novel aspects of vector development. Similar to the case for most DNA viruses, after receptor binding and entry, AAV traverses the cytoplasm and deposits the viral genome in the cell nucleus. In this study, we examined the role of the microtubule (MT) network in productive AAV infection. Using pharmacological reagents (e.g., nocodazole), live-cell imaging, and flow cytometry analysis, we demonstrated that AAV type 2 (AAV2) transduction was reduced by at least 2-fold in the absence of the MT network. Cell surface attachment and viral internalization were not dependent on an intact MT network. In treated cells at 2 h postinfection, quantitative three-dimensional (3D) microscopy determined a reproducible difference in number of intracellular particles associated with the nuclear membrane or the nucleus compared to that for controls (6 to 7% versus 26 to 30%, respectively). Confocal microscopy analysis demonstrated a direct association of virions with MTs, further supporting a critical role in AAV infection. To investigate the underling mechanisms, we employed single-particle tracking (SPT) to monitor the viral movement in real time. Surprisingly, unlike other DNA viruses (e.g., adenovirus [Ad] and herpes simplex virus [HSV]) that display bidirectional motion on MTs, AAV2 displays only unidirectional movement on MTs toward the nuclei, with peak instantaneous velocities at 1.5 to 3.5 ÎĽm/s. This rapid and unidirectional motion on MTs lasts for about 5 to 10 s and results in AAV particles migrating more than 10 ÎĽm in the cytoplasm reaching the nucleus very efficiently. Furthermore, electron microscopy analysis determined that, unlike Ad and HSV, AAV2 particles were transported on MTs within membranous compartments, and surprisingly, the acidification of AAV2-containing endosomes was delayed by the disruption of MTs. These findings together suggest an as-yet-undescribed model in which after internalization, AAV2 exploits MTs for rapid cytoplasmic trafficking in endosomal compartments unidirectionally toward the perinuclear region, where most acidification events for viral escape take place
Prediction of adeno-associated virus neutralizing antibody activity for clinical application
Patients with neutralizing antibodies (Nab) against adeno-associated virus (AAV) are usually excluded from treatment with AAV vectors. To develop a standard assay for detecting Nab inhibition activity, we systematically studied current AAV Nab assays in vitro and in vivo. Several factors were found that influence the Nab titers based on the in vitro assay, including: sera volume, AAV dose/cell, cell number and choice of transgenes. When the Nab titer assay was performed in vivo via intramuscular (IM) or systemic administration, a 4-fold increase in sensitivity for measurement of Nab titers was observed compared to an identical in vitro test. To better mimic the clinical setting, after passively transferring human Nabs into mice, blood was collected before systemic injection of AAV vector and used for Nab titer analysis in vitro or via IM injection. The results showed that AAV delivered via IM injection had a similar inhibition pattern to systemic administration. These studies indicate critical parameters necessary for optimizing Nab sensitivity and that an in vivo Nab assay is more sensitive than an in vitro assay for inclusion/exclusion criteria. The variables identified by this study may explain some of the compounding clinical data seen to date with respect to efficiency of AAV transduction in various Phase I clinical trials
Recombinant Adeno-Associated Virus Utilizes Host Cell Nuclear Import Machinery To Enter the Nucleus
Recombinant adeno-associated viral (rAAV) vectors have garnered much promise in gene therapy applications. However, widespread clinical use has been limited by transduction efficiency. Previous studies suggested that the majority of rAAV accumulates in the perinuclear region of cells, presumably unable to traffic into the nucleus. rAAV nuclear translocation remains ill-defined; therefore, we performed microscopy, genetic, and biochemical analyses in vitro in order to understand this mechanism. Lectin blockade of the nuclear pore complex (NPC) resulted in inhibition of nuclear rAAV2. Visualization of fluorescently labeled particles revealed that rAAV2 localized to importin-β-dense regions of cells in late trafficking steps. Additionally, small interfering RNA (siRNA) knockdown of importin-β partially inhibited rAAV2 nuclear translocation and inhibited transduction by 50 to 70%. Furthermore, coimmunopreciptation (co-IP) analysis revealed that capsid proteins from rAAV2 could interact with importin-β and that this interaction was sensitive to the small GTPase Ran. More importantly, mutations to key basic regions in the rAAV2 capsid severely inhibited interactions with importin-β. We tested several other serotypes and found that the extent of importin-β interaction varied, suggesting that different serotypes may utilize alternative import proteins for nuclear translocation. Co-IP and siRNA analyses were used to investigate the role of other karyopherins, and the results suggested that rAAV2 may utilize multiple import proteins for nuclear entry. Taken together, our results suggest that rAAV2 interacts with importin-β alone or in complex with other karyopherins and enters the nucleus via the NPC. These results may lend insight into the design of novel AAV vectors that have an enhanced nuclear entry capability and transduction potential
Heparan Sulfate Binding Promotes Accumulation of Intravitreally Delivered Adeno-associated Viral Vectors at the Retina for Enhanced Transduction but Weakly Influences Tropism
ABSTRACT Many adeno-associated virus (AAV) serotypes efficiently transduce the retina when delivered to the subretinal space but show limited success when delivered to the vitreous due to the inner limiting membrane (ILM). Subretinal delivery of AAV serotype 2 (AAV2) and its heparan sulfate (HS)-binding-deficient capsid led to similar expression, indicating transduction of the outer retina occurred by HS-independent mechanisms. However, intravitreal delivery of HS-ablated recombinant AAV2 (rAAV2) led to a 300-fold decrease in transduction compared to AAV2. Fluorescence in situ hybridization of AAV transgenes was used to identify differences in retinal trafficking and revealed that HS binding was responsible for AAV2 accumulation at the ILM. This mechanism was tested on human ex vivo retinas and showed similar accumulation with HS-binding AAV2 capsid only. To evaluate if HS binding could be applied to other AAV serotypes to enhance their transduction, AAV1 and AAV8 were modified to bind HS with a single-amino-acid mutation and tested in mice. Both HS-binding mutants of AAV1 and AAV8 had higher intravitreal transduction than their non-HS-binding parent capsid due to increased retinal accumulation. To understand the influence that HS binding has on tropism, chimeric AAV2 capsids with dual-glycan usage were tested intravitreally in mice. Compared to HS binding alone, these chimeric capsids displayed enhanced transduction that was correlated with a change in tropism. Taken together, these data indicate that HS binding serves to sequester AAV capsids from the vitreous to the ILM but does not influence retinal tropism. The enhanced retinal transduction of HS-binding capsids provides a rational design strategy for engineering capsids for intravitreal delivery. IMPORTANCE Adeno-associated virus (AAV) has become the vector of choice for viral gene transfer and has shown great promise in clinical trials. The need for development of an easy, less invasive injection route for ocular gene therapy is met by intravitreal delivery, but delivery of AAV by this route results in poor transduction outcomes. The inner limiting membrane (ILM) creates a barrier separating the vitreous and the retina. Binding of AAV to heparan sulfate proteoglycan (HSPG) at the ILM may allow the virus to traverse this barrier for better retinal transduction. We show that HSPG binding is correlated with greater accumulation and penetration of AAV in the retina. We demonstrated that this accumulation is conserved across mouse and human retinas and that the addition of HSPG binding to other AAV capsids can increase the number of vectors accumulating at the ILM without dictating tropism
Novel Transcriptional Regulatory Signals in the Adeno-Associated Virus Terminal Repeat A/D Junction Element
Adeno-associated virus (AAV) type 2 vectors transfer stable, long-term gene expression to diverse cell types in vivo. Many gene therapy applications require the control of long-term transgene expression, and AAV vectors, similar to other gene transfer systems, are being evaluated for delivery of regulated gene expression cassettes. Previously, we (R. P. Haberman, T. J. McCown, and R. J. Samulski, Gene Ther. 5:1604–1611, 1998) demonstrated the use of the tetracycline-responsive system for long-term regulated expression in rat brains. In that study, we also observed residual expression in the “off” state both in vitro and in vivo, suggesting that the human cytomegalovirus (CMV) major immediate-early minimal promoter or other cis-acting elements (AAV terminal repeats [TR]) were contributing to this activity. In the present study, we identify that the AAV TR, minus the tetracycline-responsive minimal CMV promoter, will initiate mRNA expression from vector templates. Using deletion analysis and specific PCR-derived TR reporter gene templates, we mapped this activity to a 37-nucleotide stretch in the A/D elements of the TR. Although the mRNA derived from the TR is generated from a non-TATA box element, the use of mutant templates failed to identify function of canonical initiator sequences as previously described. Finally, we demonstrated the presence of green fluorescent protein expression both in vitro and in vivo in brain by using recombinant virus carrying only the TR element. Since the AAV terminal repeat is a necessary component of all recombinant AAV vectors, this TR transcriptional activity may interfere with all regulated expression cassettes and may be a problem in the development of novel TR split gene vectors currently being considered for genes too large to be packaged
Ordering of apolar and polar solutes in nematic solvents
The quadrupolar splittings of deuteriated para- and ortho-dichlorobenzene (1,4-DCB and 1,2-DCB, respectively) are measured by nuclear magnetic resonance(NMR) in the nematic solvents hexyl- and pentyloxy-substituted diphenyl diacetylene (DPDA-C6 and DPDA-OC5, respectively). Measurements are taken for all four combinations of the nominally apolar (1,4-DCB) and polar (1,2-DCB) solutes in the apolar (DPDA-C6) and polar (DPDA-OC5) solvents, and throughout the entire nematic temperature range of the solutions. The temperature dependence of the second-rank orientational order parameters of the solutes are obtained from these measurements and the respective order parameters of the mesogenic cores of solvent molecules are obtained independently from carbon-13 NMR measurements. The order parameter profiles of the two solutes are found to be very different but show little variation from one solvent to the other. The results are analyzed and interpreted in terms of the underlying molecular interactions using atomistic solvent–solute potentials. The influence of electrostaticinteractions on solute ordering is directly evaluated by computing the order parameters with and without the electrostatic component of the atomistic potential. It is observed to be small. It is also found that the important interactions in these solvent–solute systems are operative over short intermolecular distances for which the representation of the partial charge distributions in terms of overall molecular dipole and quadrupole moments is not valid
Delivering multiple gene products in the brain from a single adeno-associated virus vector
For certain gene therapy applications, the simultaneous delivery of multiple genes would allow for novel therapies. In the case of adeno-associated virus (AAV) vectors, the limited packaging capacity greatly restricts current methods of carrying multiple transgene cassettes. To address this issue, a recombinant AAV (rAAV) vector was designed such that a furin proteolytic cleavage site (RKRRKR) was placed between the coding sequences of two genes (green fluorescent protein (GFP) and galanin), to allow cleavage of the chimeric protein into two fragments. In addition, these constructs contained the fibronectin secretory signal sequence that causes the gene products to be constitutively secreted from transduced cells. In vitro studies show that after transfection of HEK293 cells, the appropriate cleavage and constitutive secretion occurred regardless of the order of the genes in the transgene cassette. In vivo, infusion of rAAV vectors into the piriform cortex resulted in both GFP expression and significant galanin attenuation of kainic acid-induced seizure activity. Thus, the present results establish the utility of a proteolytic approach for the expression and secretion of multiple gene products from a single AAV vector transgene cassette
- …