129 research outputs found
Consistent Long-Term Therapeutic Efficacy of Human Umbilical Cord Matrix-Derived Mesenchymal Stromal Cells After Myocardial Infarction Despite Individual Differences and Transient Engraftment
Human mesenchymal stem cells gather special interest as a universal and feasible add-on therapy for myocardial infarction (MI). In particular, human umbilical cord matrix-derived mesenchymal stromal cells (UCM-MSC) are advantageous since can be easily obtained and display high expansion potential. Using isolation protocols compliant with cell therapy, we previously showed UCM-MSC preserved cardiac function and attenuated remodeling 2 weeks after MI. In this study, UCM-MSC from two umbilical cords, UC-A and UC-B, were transplanted in a murine MI model to investigate consistency and durability of the therapeutic benefits. Both cellular products improved cardiac function and limited adverse cardiac remodeling 12 weeks post-ischemic injury, supporting sustained and long-term beneficial therapeutic effect. Donor associated variability was found in the modulation of cardiac remodeling and activation of the Akt-mTOR-GSK3ß survival pathway. In vitro, the two cell products displayed similar ability to induce the formation of vessel-like structures and comparable transcriptome in normoxia and hypoxia, apart from UCM-MSCs proliferation and expression differences in a small subset of genes associated with MHC Class I. These findings support that UCM-MSC are strong candidates to assist the treatment of MI whilst calling for the discussion on methodologies to characterize and select best performing UCM-MSC before clinical application.This work was funded by European Structural and Investment Funds (ESIF), under Lisbon Portugal Regional Operational Programme and National Funds through Fundação para a Ciência e Tecnologia (FCT) ([POCI-01-0145-FEDER-030985], [POCI-01-0145-FEDER-016385]); by FCT/Ministério da Ciência, Tecnologia e Inovação in the framework of individual funding [CEECINST/00091/2018] to DN and by QREN funds through the project ClinUCX (QREN 30196) and individual fellowships: [PD/BD/127997/2016] to TL, [SFRH/BD/144490/2019] to RG and [SFRH/BD/111799/2015] to VS-P. The funding bodies other than ECBio had no role in design, in the collection, analysis, and interpretation of data; in the writing of the manuscript; or in the decision to submit the manuscript for publication
In Vitro Surfactant Structure-Toxicity Relationships: Implications for Surfactant Use in Sexually Transmitted Infection Prophylaxis and Contraception
Background
The need for woman-controlled, cheap, safe, effective, easy-to-use and easy-to-store topical applications for prophylaxis against sexually transmitted infections (STIs) makes surfactant-containing formulations an interesting option that requires a more fundamental knowledge concerning surfactant toxicology and structure-activity relationships.
Methodology/Principal Findings
We report in vitro effects of surfactant concentration, exposure time and structure on the viability of mammalian cell types typically encountered in the vagina, namely, fully polarized and confluent epithelial cells, confluent but non-polarized epithelial-like cells, dendritic cells, and human sperm. Representatives of the different families of commercially available surfactants – nonionic (Triton X-100 and monolaurin), zwitterionic (DDPS), anionic (SDS), and cationic (CnTAB (n = 10 to 16), C12PB, and C12BZK) – were examined. Triton X-100, monolaurin, DDPS and SDS were toxic to all cell types at concentrations around their critical micelle concentration (CMC) suggesting a non-selective mode of action involving cell membrane destabilization and/or destruction. All cationic surfactants were toxic at concentrations far below their CMC and showed significant differences in their toxicity toward polarized as compared with non-polarized cells. Their toxicity was also dependent on the chemical nature of the polar head group. Our results suggest an intracellular locus of action for cationic surfactants and show that their structure-activity relationships could be profitably exploited for STI prophylaxis in vaginal gel formulations. The therapeutic indices comparing polarized epithelial cell toxicity to sperm toxicity for all surfactants examined, except C12PB and C12BZK, does not justify their use as contraceptive agents. C12PB and C12BZK are shown to have a narrow therapeutic index recommending caution in their use in contraceptive formulations.
Conclusions/Significance
Our results contribute to understanding the mechanisms involved in surfactant toxicity, have a predictive value with regard to their safety, and may be used to design more effective and less harmful surfactants for use in topical applications for STI prophylaxis.Foundation for Science and
Technology of the Portuguese Ministry of Science and Higher Educatio
Vasodilator factors in the systemic and local adaptations to pregnancy
We postulate that an orchestrated network composed of various vasodilatory systems participates in the systemic and local hemodynamic adaptations in pregnancy. The temporal patterns of increase in the circulating and urinary levels of five vasodilator factors/systems, prostacyclin, nitric oxide, kallikrein, angiotensin-(1–7) and VEGF, in normal pregnant women and animals, as well as the changes observed in preeclamptic pregnancies support their functional role in maintaining normotension by opposing the vasoconstrictor systems. In addition, the expression of these vasodilators in the different trophoblastic subtypes in various species supports their role in the transformation of the uterine arteries. Moreover, their expression in the fetal endothelium and in the syncytiotrophoblast in humans, rats and guinea-pigs, favour their participation in maintaining the uteroplacental circulation. The findings that sustain the functional associations of the various vasodilators, and their participation by endocrine, paracrine and autocrine regulation of the systemic and local vasoactive changes of pregnancy are abundant and compelling. However, further elucidation of the role of the various players is hampered by methodological problems. Among these difficulties is the complexity of the interactions between the different factors, the likelihood that experimental alterations induced in one system may be compensated by the other players of the network, and the possibility that data obtained by manipulating single factors in vitro or in animal studies may be difficult to translate to the human. In addition, the impossibility of sampling the uteroplacental interface along normal pregnancy precludes obtaining longitudinal profiles of the various players. Nevertheless, the possibility of improving maternal blood pressure regulation, trophoblast invasion and uteroplacental flow by enhancing vasodilation (e.g. L-arginine, NO donors, VEGF transfection) deserves unravelling the intricate association of vasoactive factors and the systemic and local adaptations to pregnancy
- …