1,277 research outputs found
A Policy Maker’s Guide to Designing Payments for Ecosystem Services
Over the past five years, there has been increasing interest around the globe in payment schemes for the provision of ecosystem services, such as water purification, carbon sequestration, flood control, etc. Written for an Asian Development Bank project in China, this report provides a user-friendly guide to designing payments for the provision of ecosystem services. Part I explains the different types of ecosystem services, different ways of assessing their value, and why they are traditionally under-protected by law and policy. This is followed by an analysis of when payments for services are a preferable approach to other policy instruments. Part II explains the design issues underlying payments for services. These include identification of the service as well as potential buyers and sellers, the level of service needed, payment timing, payment type, and risk allocation. Part II contains a detailed analysis of the different types of payment mechanisms, ranging from general subsidy and certification to mitigation and offset payments. Part III explores the challenges to designing a payment scheme. These include the ability to monitor service provision, secure property rights, perverse incentives, supporting institutions, and poverty alleviation
Comments on Proposed Gravitational Modifications of Schrodinger Dynamics and their Experimental Implications
We discuss aspects of gravitational modifications of Schrodinger dynamics
proposed by Diosi and Penrose. We consider first the Diosi-Penrose criterion
for gravitationally induced state vector reduction, and compute the reduction
time expected for a superposition of a uniform density cubical solid in two
positions displaced by a small fraction of the cube side. We show that the
predicted effect is much smaller than would be observable in the proposed
Marshall et al. mirror experiment. We then consider the ``Schrodinger -Newton''
equation for an N-particle system. We show that in the independent particle
approximation, it differs from the usual Hartree approximation applied to the
Newtonian potential by self-interaction terms, which do not have a consistent
Born rule interpretation. This raises doubts about the use of the
Schrodinger-Newton equation to calculate gravitational effects on molecular
interference experiments. When the effects of Newtonian gravitation on
molecular diffraction are calculated using the standard many-body Schrodinger
equation, no washing out of the interference pattern is predicted.Comment: Tex, 17
Low-temperature tapered-fiber probing of diamond NV ensembles coupled to GaP microcavities
In this work we present a platform for testing the device performance of a
cavity-emitter system, using an ensemble of emitters and a tapered optical
fiber. This method provides high-contrast spectra of the cavity modes,
selective detection of emitters coupled to the cavity, and an estimate of the
device performance in the single- emitter case. Using nitrogen-vacancy (NV)
centers in diamond and a GaP optical microcavity, we are able to tune the
cavity onto the NV resonance at 10 K, couple the cavity-coupled emission to a
tapered fiber, and measure the fiber-coupled NV spontaneous emission decay.
Theoretically we show that the fiber-coupled average Purcell factor is 2-3
times greater than that of free-space collection; although due to ensemble
averaging it is still a factor of 3 less than the Purcell factor of a single,
ideally placed center.Comment: 15 pages, 6 figure
Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure
Inflation plays a central role in our current understanding of the universe.
According to the standard viewpoint, the homogeneous and isotropic mode of the
inflaton field drove an early phase of nearly exponential expansion of the
universe, while the quantum fluctuations (uncertainties) of the other modes
gave rise to the seeds of cosmic structure. However, if we accept that the
accelerated expansion led the universe into an essentially homogeneous and
isotropic space-time, with the state of all the matter fields in their vacuum
(except for the zero mode of the inflaton field), we can not escape the
conclusion that the state of the universe as a whole would remain always
homogeneous and isotropic. It was recently proposed in [A. Perez, H. Sahlmann
and D. Sudarsky, "On the quantum origin of the seeds of cosmic structure,"
Class. Quant. Grav. 23, 2317-2354 (2006)] that a collapse (representing physics
beyond the established paradigm, and presumably associated with a
quantum-gravity effect a la Penrose) of the state function of the inflaton
field might be the missing element, and thus would be responsible for the
emergence of the primordial inhomogeneities. Here we will discuss a formalism
that relies strongly on quantum field theory on curved space-times, and within
which we can implement a detailed description of such a process. The picture
that emerges clarifies many aspects of the problem, and is conceptually quite
transparent. Nonetheless, we will find that the results lead us to argue that
the resulting picture is not fully compatible with a purely geometric
description of space-time.Comment: 53 pages, no figures. Revision to match the published versio
Is there a relativistic nonlinear generalization of quantum mechanics?
Yes, there is. - A new kind of gauge theory is introduced, where the minimal
coupling and corresponding covariant derivatives are defined in the space of
functions pertaining to the functional Schroedinger picture of a given field
theory. While, for simplicity, we study the example of an U(1) symmetry, this
kind of gauge theory can accommodate other symmetries as well. We consider the
resulting relativistic nonlinear extension of quantum mechanics and show that
it incorporates gravity in the (0+1)-dimensional limit, where it leads to the
Schroedinger-Newton equations. Gravity is encoded here into a universal
nonlinear extension of quantum theory. The probabilistic interpretation, i.e.
Born's rule, holds provided the underlying model has only dimensionless
parameters.Comment: 10 pages; talk at DICE 2006 (Piombino, September 11-15, 2006); to
appear in Journal of Physics: Conference Series (2007
Using second harmonic generation to predict patient outcome in solid tumors
Abstract
Background
Over-treatment of estrogen receptor positive (ER+), lymph node-negative (LNN) breast cancer patients with chemotherapy is a pressing clinical problem that can be addressed by improving techniques to predict tumor metastatic potential. Here we demonstrate that analysis of second harmonic generation (SHG) emission direction in primary tumor biopsies can provide prognostic information about the metastatic outcome of ER+, LNN breast cancer, as well as stage 1 colorectal adenocarcinoma.
Methods
SHG is an optical signal produced by fibrillar collagen. The ratio of the forward-to-backward emitted SHG signals (F/B) is sensitive to changes in structure of individual collagen fibers. F/B from excised primary tumor tissue was measured in a retrospective study of LNN breast cancer patients who had received no adjuvant systemic therapy and related to metastasis-free survival (MFS) and overall survival (OS) rates. In addition, F/B was studied for its association with the length of progression-free survival (PFS) in a subgroup of ER+ patients who received tamoxifen as first-line treatment for recurrent disease, and for its relation with OS in stage I colorectal and stage 1 lung adenocarcinoma patients.
Results
In 125 ER+, but not in 96 ER-negative (ER-), LNN breast cancer patients an increased F/B was significantly associated with a favorable MFS and OS (log rank trend for MFS: p = 0.004 and for OS: p = 0.03). On the other hand, an increased F/B was associated with shorter PFS in 60 ER+ recurrent breast cancer patients treated with tamoxifen (log rank trend p = 0.02). In stage I colorectal adenocarcinoma, an increased F/B was significantly related to poor OS (log rank trend p = 0.03), however this relationship was not statistically significant in stage I lung adenocarcinoma.
Conclusion
Within ER+, LNN breast cancer specimens the F/B can stratify patients based upon their potential for tumor aggressiveness. This offers a “matrix-focused” method to predict metastatic outcome that is complementary to genomic “cell-focused” methods. In combination, this and other methods may contribute to improved metastatic prediction, and hence may help to reduce patient over-treatment.http://deepblue.lib.umich.edu/bitstream/2027.42/116036/1/12885_2015_Article_1911.pd
Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated
Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to
the image of an approaching object. These neurons are called the lobula giant movement
detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the
development of an LGMD model for use as an artificial collision detector in robotic applications.
To date, robots have been equipped with only a single, central artificial LGMD sensor, and this
triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly,
for a robot to behave autonomously, it must react differently to stimuli approaching from
different directions. In this study, we implement a bilateral pair of LGMD models in Khepera
robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD
models using methodologies inspired by research on escape direction control in cockroaches.
Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration,
the khepera robots could escape an approaching threat in real time and with a similar
distribution of escape directions as real locusts. We also found that by optimising these
algorithms, we could use them to integrate the left and right DCMD responses of real jumping
locusts offline and reproduce the actual escape directions that the locusts took in a particular
trial. Our results significantly advance the development of an artificial collision detection and
evasion system based on the locust LGMD by allowing it reactive control over robot behaviour.
The success of this approach may also indicate some important areas to be pursued in future
biological research
Notes on Certain Newton Gravity Mechanisms of Wave Function Localisation and Decoherence
Both the additional non-linear term in the Schr\"odinger equation and the
additional non-Hamiltonian term in the von Neumann equation, proposed to ensure
localisation and decoherence of macro-objects, resp., contain the same
Newtonian interaction potential formally. We discuss certain aspects that are
common for both equations. In particular, we calculate the enhancement of the
proposed localisation and/or decoherence effects, which would take place if one
could lower the conventional length-cutoff and resolve the mass density on the
interatomic scale.Comment: 8pp LaTex, Submitted to J. Phys. A: Math-Gen, for the special issue
``The Quantum Universe'' in honor of G. C. Ghirard
Causal propagation of geometrical fields in relativistic cosmology
We employ the extended 1+3 orthonormal frame formalism for fluid spacetime
geometries , which contains the Bianchi field
equations for the Weyl curvature, to derive a 44-D evolution system of
first-order symmetric hyperbolic form for a set of geometrically defined
dynamical field variables. Describing the matter source fields
phenomenologically in terms of a barotropic perfect fluid, the propagation
velocities (with respect to matter-comoving observers that Fermi-propagate
their spatial reference frames) of disturbances in the matter and the
gravitational field, represented as wavefronts by the characteristic 3-surfaces
of the system, are obtained. In particular, the Weyl curvature is found to
account for two (non-Lorentz-invariant) Coulomb-like characteristic eigenfields
propagating with and four transverse characteristic eigenfields
propagating with , which are well known, and four
(non-Lorentz-invariant) longitudinal characteristic eigenfields propagating
with |v| = \sfrac{1}{2}. The implications of this result are discussed in
some detail and a parallel is drawn to the propagation of irregularities in the
matter distribution. In a worked example, we specialise the equations to
cosmological models in locally rotationally symmetric class II and include the
constraints into the set of causally propagating dynamical variables.Comment: 25 pages, RevTeX (10pt), accepted for publication by Physical Review
- …