15 research outputs found
Genetic Diversity Analysis of Sapindus in China and Extraction of a Core Germplasm Collection Using EST-SSR Markers
Sapindus is an important forest tree genus with utilization in biodiesel, biomedicine, and it harbors great potential for biochemical engineering applications. For advanced breeding of Sapindus, it is necessary to evaluate the genetic diversity and construct a rationally designed core germplasm collection. In this study, the genetic diversity and population structure of Sapindus were conducted with 18 expressed sequence tag-simple sequence repeat (EST-SSR) markers in order to establish a core germplasm collection from 161 Sapindus accessions. The population of Sapindus showed high genetic diversity and significant population structure. Interspecific genetic variation was significantly higher than intraspecific variation in the Sapindus mukorossi, Sapindus delavayi, and combined Sapindus rarak plus Sapindus rarak var. velutinus populations. S. mukorossi had abundant genetic variation and showed a specific pattern of geographical variation, whereas S. delavayi, S. rarak, and S. rarak var. velutinus showed less intraspecific variation. A core germplasm collection was created that contained 40% of genetic variation in the initial population, comprising 53 S. mukorossi and nine S. delavayi lineages, as well as single representatives of S. rarak and S. rarak var. velutinus. These results provide a germplasm basis and theoretical rationale for the efficient management, conservation, and utilization of Sapindus, as well as genetic resources for joint genomics research in the future.Peer reviewe
Intestinal Microbiota in Healthy US Young Children and Adults-A High Throughput Microarray Analysis
Peer reviewe
Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis
Reactive oxygen species (ROS) are key signalling intermediates in plant metabolism, defence, and stress adaptation. In plants, both the chloroplast and mitochondria are centres of metabolic control and ROS production, which coordinate stress responses in other cell compartments. The herbicide and experimental tool, methyl viologen (MV) induces ROS generation in the chloroplast under illumination, but is also toxic in non-photosynthetic organisms. We used MV to probe plant ROS signalling in compartments other than the chloroplast. Taking a genetic approach in the model plant Arabidopsis (Arabidopsis thaliana), we used natural variation, QTL mapping, and mutant studies with MV in the light, but also under dark conditions, when the chloroplast electron transport is inactive. These studies revealed a light-independent MV-induced ROS-signalling pathway, suggesting mitochondrial involvement. Mitochondrial Mn SUPEROXIDE DISMUTASE was required for ROS-tolerance and the effect of MV was enhanced by exogenous sugar, providing further evidence for the role of mitochondria. Mutant and hormone feeding assays revealed roles for stress hormones in organellar ROS-responses. The radical-induced cell death1 mutant, which is tolerant to MV-induced ROS and exhibits altered mitochondrial signalling, was used to probe interactions between organelles. Our studies suggest that mitochondria are involved in the response to ROS induced by MV in plants.Peer reviewe
Faecal Metaproteomic Analysis Reveals a Personalized and Stable Functional Microbiome and Limited Effects of a Probiotic Intervention in Adults
Recent metagenomic studies have demonstrated that the overall functional potential of the intestinal microbiome is rather conserved between healthy individuals. Here we assessed the biological processes undertaken in-vivo by microbes and the host in the intestinal tract by conducting a metaproteome analysis from a total of 48 faecal samples of 16 healthy adults participating in a placebo-controlled probiotic intervention trial. Half of the subjects received placebo and the other half consumed Lactobacillus rhamnosus GG for three weeks (10(10) cfu per day). Faecal samples were collected just before and at the end of the consumption phase as well as after a three-week follow-up period, and were processed for microbial composition and metaproteome analysis. A common core of shared microbial protein functions could be identified in all subjects. Furthermore, we observed marked differences in expressed proteins between subjects that resulted in the definition of a stable and personalized microbiome both at the mass-spectrometry-based proteome level and the functional level based on the KEGG pathway analysis. No significant changes in the metaproteome were attributable to the probiotic intervention. A detailed taxonomic assignment of peptides and comparison to phylogenetic microarray data made it possible to evaluate the activity of the main phyla as well as key species, including Faecalibacterium prausnitzii. Several correlations were identified between human and bacterial proteins. Proteins of the human host accounted for approximately 14% of the identified metaproteome and displayed variations both between and within individuals. The individually different human intestinal proteomes point to personalized host-microbiota interactions. Our findings indicate that analysis of the intestinal metaproteome can complement gene-based analysis and contributes to a thorough understanding of the activities of the microbiome and the relevant pathways in health and disease.Peer reviewe
Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition
The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as gamma-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.Peer reviewe
Genomic insights into rapid speciation within the world's largest tree genus Syzygium
The relative importance of the mechanisms underlying species radiation remains unclear. Here, the authors combine reference genome assembly and population genetics analyses to show that neutral forces have contributed to the radiation of the most species-rich tree genus Syzygium. Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification.Peer reviewe
Using hidden Markov model to uncover processing states from eye movements in information search tasks
We study how processing states alternate during information search tasks. Inference is carried out with a discriminative hidden Markov model (dHMM) learned from eye movement data, measured in an experiment consisting of three task types: (i) simple word search, (ii) finding a sentence that answers a question and (iii) choosing a subjectively most interesting title from a list of ten titles. The results show that eye movements contain necessary information for determining the task type. After training, the dHMM predicted the task for test data with 60.2% accuracy (pure chance 33.3%). Word search and subjective interest conditions were easier to predict than the question-answer condition. The dHMM that best fitted our data segmented each task type into three hidden states. The three processing states were identified by comparing the parameters of the dHMM states to literature on eye movement research. A scanning type of eye behavior was observed in the beginning of the tasks. Next, participants tended to shift to states reflecting reading type of eye movements, and finally they ended the tasks in states which we termed as the decision states. (C) 2008 Elsevier B.V. All rights reserved