105 research outputs found

    Comment on ``Quasiparticle Spectra around a Single Vortex in a d-wave Superconductor''

    Full text link
    In a recent Letter Morita, Kohmoto and Maki analyzed the structure of quasiparticle states near a single vortex in a d-wave superconductor using an approximate version of the Bogoliubov - de Gennes theory. Their principal result is the existence of a bound state within the core region at finite energy with full rotational symmetry, which they assert explains the recent scanning tunneling microscopy results on YBCO single crystals. Here we argue that the approximation used in this work is fundamentally inadequate for the description of a d-wave vortex and that the obtained circular symmetry of the local density of states is an unphysical artifact of this approximation.Comment: 1 page REVTeX, to appear in PR

    Topological Excitations of One-Dimensional Correlated Electron Systems

    Full text link
    Properties of low-energy excitations in one-dimensional superconductors and density-wave systems are examined by the bosonization technique. In addition to the usual spin and charge quantum numbers, a new, independently measurable attribute is introduced to describe elementary, low-energy excitations. It can be defined as a number w which determines, in multiple of π\pi, how many times the phase of the order parameter winds as an excitation is transposed from far left to far right. The winding number is zero for electrons and holes with conventional quantum numbers, but it acquires a nontrivial value w=1 for neutral spin-1/2 excitations and for spinless excitations with a unit electron charge. It may even be irrational, if the charge is irrational. Thus, these excitations are topological, and they can be viewed as composite particles made of spin or charge degrees of freedom and dressed by kinks in the order parameter.Comment: 5 pages. And we are not only splitting point

    Subgap states in dirty superconductors and their effect on dephasing in Josephson qubits

    Full text link
    We present a theory of the subgap tails of the density of states in a diffusive superconductor containing magnetic impurities. We show that the subgap tails have two contributions: one arising from mesoscopic gap fluctuations, previously discussed by Lamacraft and Simons, and the other associated to the long-wave fluctuations of the concentration of magnetic impurities. We study the latter both in small superconducting grains and in bulk systems [d=1,2,3d=1,2,3], and establish the dimensionless parameter that controls which of the two contributions dominates the subgap tails. We observe that these contributions are related to each other by dimensional reduction. We apply the theory to estimate the effects of a weak concentration of magnetic impurities [≈1p.p.m\approx 1 {\rm p.p.m}] on the phase coherence of Josephson qubits. We find that at these typical concentrations, magnetic impurities are relevant for the dephasing in large qubits, designed around a 10μm10 {\rm \mu m} scale, where they limit the quality factor to be Q<104−105Q<10^4-10^5.Comment: 13 pages, 1 figur

    Striped superconductors in the extended Hubbard model

    Full text link
    We present a minimal model of a doped Mott insulator that simultaneously supports antiferromagnetic stripes and d-wave superconductivity. We explore the implications for the global phase diagram of the superconducting cuprates. At the unrestricted mean-field level, the various phases of the cuprates, including weak and strong pseudogap phases, and two different types of superconductivity in the underdoped and the overdoped regimes, find a natural interpretation. We argue that on the underdoped side, the superconductor is intrinsically inhomogeneous -- striped coexistence of of superconductivity and magnetism -- and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. On the overdoped side, the state is overall homogeneous and the superconductivity is of the classical BCS type.Comment: 5 pages, 3 eps figures. Effect of t' on stripe filling + new references are adde

    Local density of states around a magnetic impurity in high-Tc superconductors based on the t-J model

    Full text link
    The local density of states (LDOS) around a magnetic impurity in high-Tc superconductors is studied using the two-dimensional t-J model with a realistic band structure. The order parameters are determined in a self-consistent way within the Gutzwiller approximation and the Bogoliubov-de Gennes theory. In sharp contrast with the nonmagnetic impurity case, the LDOS near the magnetic impurity shows two resonance peaks reflecting the presence of spin-dependent resonance states. It is also shown that these resonance states are approximately localized around the impurity. The present results have an large implication on the scanning tunneling spectroscopy observation of Bi_{2}Sr_{2}Ca(Cu_{1-x}Ni[Zn]_{x})_{2}O_{8+delta}.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Quantum Breathers in a Nonlinear Lattice

    Full text link
    We study nonlinear phonon excitations in a one-dimensional quantum nonlinear lattice model using numerical exact diagonalization. We find that multi-phonon bound states exist as eigenstates which are natural counterparts of breather solutions of classical nonlinear systems. In a translationally invariant system, these quantum breather states form particle-like bands and are characterized by a finite correlation length. The dynamic structure factor has significant intensity for the breather states, with a corresponding quenching of the neighboring bands of multi-phonon extended states.Comment: 4 pages, RevTex, 4 postscript figures, Physical Relview Letters (in press

    Collective Excitations in High-Temperature Superconductors

    Full text link
    Collective, low-energy excitations in quasi-two-dimensional d-wave superconductors are analyzed. While the long-range Coulomb interaction shifts the charge-density-wave and phase modes up to the plasma energy, the spin-density-wave excitation that arises due to a strong local electron-electron repulsion can propagate as a damped collective mode within the superconducting energy gap. It is suggested that these excitations are relevant to high-Tc superconductors, close to the antiferromagnetic phase boundary, and may explain some of the exotic features of the experimentally observed spectral-density and neutron-scattering data.Comment: 5 jolly page

    Numerical Renormalization Group Study of Kondo Effect in Unconventional Superconductors

    Full text link
    Orbital degrees of freedom of a Cooper pair play an important role in the unconventional superconductivity. To elucidate the orbital effect in the Kondo problem, we investigated a single magnetic impurity coupled to Cooper pairs with a px+ipyp_x +i p_y (dx2−y2+idxyd_{x^2-y^2}+id_{xy}) symmetry using the numerical renormalization group method. It is found that the ground state is always a spin doublet. The analytical solution for the strong coupling limit explicitly shows that the orbital dynamics of the Cooper pair generates the spin 1/2 of the ground state.Comment: 4 pages, 2 figures, JPSJ.sty, to be published in J. Phys. Soc. Jpn. 70 (2001) No. 1
    • …
    corecore