163 research outputs found

    High-order harmonic generation with a strong laser field and an attosecond-pulse train: the Dirac Delta comb and monochromatic limits

    Get PDF
    In recent publications, it has been shown that high-order harmonic generation can be manipulated by employing a time-delayed attosecond pulse train superposed to a strong, near-infrared laser field. It is an open question, however, which is the most adequate way to approximate the attosecond pulse train in a semi-analytic framework. Employing the Strong-Field Approximation and saddle-point methods, we make a detailed assessment of the spectra obtained by modeling the attosecond pulse train by either a monochromatic wave or a Dirac-Delta comb. These are the two extreme limits of a real train, which is composed by a finite set of harmonics. Specifically, in the monochromatic limit, we find the downhill and uphill sets of orbits reported in the literature, and analyze their influence on the high-harmonic spectra. We show that, in principle, the downhill trajectories lead to stronger harmonics, and pronounced enhancements in the low-plateau region. These features are analyzed in terms of quantum interference effects between pairs of quantum orbits, and compared to those obtained in the Dirac-Delta limit.Comment: 10 pages, 7 figures (eps files). To appear in Laser Physic

    Imaging orbitals with attosecond and Ångström resolutions: toward attochemistry? Imaging orbitals with attosecond and Ångström resolutions: toward attochemistry?

    Get PDF
    International audienceThe recently developed attosecond light sources make the investigation of ultrafast processes in matter possible with unprecedented time resolution. It has been proposed that the very mechanism underlying the attosecond emission allows the imaging of valence orbitals with Ångström space resolution. This controversial idea together with the possibility of combining attosecond and Ångström resolutions in the same measurements has become a hot topic in strong-field science. Indeed , this could provide a new way to image the evolution of the molecular electron cloud during , e. g. a chemical reaction in ' real time '. Here we review both experimental and theoretical challenges raised by the implementation of these prospects. In particular , we show how the valence orbital structure is encoded in the spectral phase of the recombination dipole moment calculated for Coulomb scattering states , which allows a tomographic reconstruction of the orbital using first-order corrections to the plane-wave approach. The possibility of disentangling multi-channel contributions to the attosecond emission is discussed as well as the necessary compromise between the temporal and spatial resolutions. (Some figures may appear in colour only in the online journal

    Interference effects in two-photon ATI by multiple orders high harmonics with random or locked phases

    Full text link
    We numerically study 2-photon processes using a set of harmonics from a Ti:Sapphire laser and in particular interference effects in the Above Threshold Ionization spectra. We compare the situation where the harmonic phases are assumed locked to the case where they have a random distribution. Suggestions for possible experiments, using realistic parameters are discussed.Comment: 11 pages, 13 figures, LaTe

    Spectrally resolved multi-channel contributions to the harmonic emission in N 2

    Get PDF
    International audienceWhen generated in molecules, high-order harmonics can be emitted through different ionization channels. The coherent and ultrafast electron dynamics occurring in the ion during the generation process is directly imprinted in the harmonic signal, i.e. in its amplitude and spectral phase. In aligned N2 molecules, we find evidence for a fast variation of this phase as a function of the harmonic order when varying the driving laser intensity. Basing our analysis on a three-step model, we find that this phase variation is a signature of transitions from a single- to a multi-channel regime. In particular, we show that significant nuclear dynamics may occur in the ionization channels on the attosecond timescale, affecting both the amplitude and the phase of the harmonic signal

    Molecular orbital tomography from multi-channel harmonic emission in N2

    Get PDF
    International audienceHigh-order harmonic generation in aligned molecules can be used as an ultrafast probe of molecular structure and dynamics. By characterizing the emitted signal , one can retrieve information about electronic and nuclear dynamics occurring in the molecule at the attosecond timescale. In this paper , we discuss the theoretical and experimental aspects of molecular orbital tomography in N 2 and investigate the influence of multi-channel ionization on the orbital imaging. By analyzing the spectral phase of the harmonic emission as a function of the driving laser intensity , we address two distinct cases , which in principle allow the orbital reconstruction. First , the contributions from two molecular orbitals could be disentangled in the real and imaginary parts of the measured dipole , making it possible to reconstruct both orbitals. Second , by decreasing the driving laser intensity , the transition from a multi-channel to a single-channel ionization regime is shown. The highest occupied molecular orbital may then be selected as the only one contributing efficiently to the harmonic emission. The latter approach paves the way towards the generalization of tomography to more complex systems
    • …
    corecore