43 research outputs found

    Voice Conversion Using Sequence-to-Sequence Learning of Context Posterior Probabilities

    Full text link
    Voice conversion (VC) using sequence-to-sequence learning of context posterior probabilities is proposed. Conventional VC using shared context posterior probabilities predicts target speech parameters from the context posterior probabilities estimated from the source speech parameters. Although conventional VC can be built from non-parallel data, it is difficult to convert speaker individuality such as phonetic property and speaking rate contained in the posterior probabilities because the source posterior probabilities are directly used for predicting target speech parameters. In this work, we assume that the training data partly include parallel speech data and propose sequence-to-sequence learning between the source and target posterior probabilities. The conversion models perform non-linear and variable-length transformation from the source probability sequence to the target one. Further, we propose a joint training algorithm for the modules. In contrast to conventional VC, which separately trains the speech recognition that estimates posterior probabilities and the speech synthesis that predicts target speech parameters, our proposed method jointly trains these modules along with the proposed probability conversion modules. Experimental results demonstrate that our approach outperforms the conventional VC.Comment: Accepted to INTERSPEECH 201

    A Technical Comparison of IPSec and SSL

    Get PDF
    IPSec (IP Security) and SSL (Secure Socket Layer) have been the most robust and most potential tools available for securing communications over the Internet. Both IPSec and SSL have advantages and shortcomings. Yet no paper has been found comparing the two protocols in terms of characteristic and functionality. Our objective is to present an analysis of security and performance properties for IPSec and SSL

    JVNV: A Corpus of Japanese Emotional Speech with Verbal Content and Nonverbal Expressions

    Full text link
    We present the JVNV, a Japanese emotional speech corpus with verbal content and nonverbal vocalizations whose scripts are generated by a large-scale language model. Existing emotional speech corpora lack not only proper emotional scripts but also nonverbal vocalizations (NVs) that are essential expressions in spoken language to express emotions. We propose an automatic script generation method to produce emotional scripts by providing seed words with sentiment polarity and phrases of nonverbal vocalizations to ChatGPT using prompt engineering. We select 514 scripts with balanced phoneme coverage from the generated candidate scripts with the assistance of emotion confidence scores and language fluency scores. We demonstrate the effectiveness of JVNV by showing that JVNV has better phoneme coverage and emotion recognizability than previous Japanese emotional speech corpora. We then benchmark JVNV on emotional text-to-speech synthesis using discrete codes to represent NVs. We show that there still exists a gap between the performance of synthesizing read-aloud speech and emotional speech, and adding NVs in the speech makes the task even harder, which brings new challenges for this task and makes JVNV a valuable resource for relevant works in the future. To our best knowledge, JVNV is the first speech corpus that generates scripts automatically using large language models

    Coco-Nut: Corpus of Japanese Utterance and Voice Characteristics Description for Prompt-based Control

    Full text link
    In text-to-speech, controlling voice characteristics is important in achieving various-purpose speech synthesis. Considering the success of text-conditioned generation, such as text-to-image, free-form text instruction should be useful for intuitive and complicated control of voice characteristics. A sufficiently large corpus of high-quality and diverse voice samples with corresponding free-form descriptions can advance such control research. However, neither an open corpus nor a scalable method is currently available. To this end, we develop Coco-Nut, a new corpus including diverse Japanese utterances, along with text transcriptions and free-form voice characteristics descriptions. Our methodology to construct this corpus consists of 1) automatic collection of voice-related audio data from the Internet, 2) quality assurance, and 3) manual annotation using crowdsourcing. Additionally, we benchmark our corpus on the prompt embedding model trained by contrastive speech-text learning.Comment: Submitted to ASRU202
    corecore