3,138 research outputs found

    Word Affect Intensities

    Full text link
    Words often convey affect -- emotions, feelings, and attitudes. Lexicons of word-affect association have applications in automatic emotion analysis and natural language generation. However, existing lexicons indicate only coarse categories of affect association. Here, for the first time, we create an affect intensity lexicon with real-valued scores of association. We use a technique called best-worst scaling that improves annotation consistency and obtains reliable fine-grained scores. The lexicon includes terms common from both general English and terms specific to social media communications. It has close to 6,000 entries for four basic emotions. We will be adding entries for other affect dimensions shortly

    Recurrence Tracking Microscope

    Full text link
    In order to probe nanostructures on a surface we present a microscope based on the quantum recurrence phenomena. A cloud of atoms bounces off an atomic mirror connected to a cantilever and exhibits quantum recurrences. The times at which the recurrences occur depend on the initial height of the bouncing atoms above the atomic mirror, and vary following the structures on the surface under investigation. The microscope has inherent advantages over existing techniques of scanning tunneling microscope and atomic force microscope. Presently available experimental technology makes it possible to develop the device in the laboratory

    The Effect of Negators, Modals, and Degree Adverbs on Sentiment Composition

    Full text link
    Negators, modals, and degree adverbs can significantly affect the sentiment of the words they modify. Often, their impact is modeled with simple heuristics; although, recent work has shown that such heuristics do not capture the true sentiment of multi-word phrases. We created a dataset of phrases that include various negators, modals, and degree adverbs, as well as their combinations. Both the phrases and their constituent content words were annotated with real-valued scores of sentiment association. Using phrasal terms in the created dataset, we analyze the impact of individual modifiers and the average effect of the groups of modifiers on overall sentiment. We find that the effect of modifiers varies substantially among the members of the same group. Furthermore, each individual modifier can affect sentiment words in different ways. Therefore, solutions based on statistical learning seem more promising than fixed hand-crafted rules on the task of automatic sentiment prediction.Comment: In Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA), San Diego, California, 201
    corecore