1,071 research outputs found

    HyperKhaler Metrics Building and Integrable Models

    Full text link
    Methods developed for the analysis of integrable systems are used to study the problem of hyperK\"ahler metrics building as formulated in D=2 N=4 supersymmetric harmonic superspace. We show, in particular, that the constraint equation Ξ²βˆ‚++2Ο‰βˆ’ΞΎ++2exp⁑2Ξ²Ο‰=0\beta\partial^{++2}\omega -\xi^{++2}\exp 2\beta\omega =0 and its Toda like generalizations are integrable. Explicit solutions together with the conserved currents generating the symmetry responsible of the integrability of these equations are given. Other features are also discussedComment: Latex file, 12 page

    Four Dimensional Graphene

    Full text link
    Mimicking pristine 2D graphene, we revisit the BBTW model for 4D lattice QCD given in ref.[5] by using the hidden SU(5) symmetry of the 4D hyperdiamond lattice H_4. We first study the link between the H_4 and SU(5); then we refine the BBTW 4D lattice action by using the weight vectors \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 of the 5-dimensional representation of SU(5) satisfying {\Sigma}_i\lambda_i=0. After that we study explicitly the solutions of the zeros of the Dirac operator D in terms of the SU(5) simple roots \alpha_1, \alpha_2, \alpha_3, \alpha_4 generating H_4; and its fundamental weights \omega_1, \omega_2, \omega_3, \omega_4 which generate the reciprocal lattice H_4^\ast. It is shown, amongst others, that these zeros live at the sites of H_4^\ast; and the continuous limit D is given by ((id\surd5)/2) \gamma^\muk_\mu with d, \gamma^\mu and k_\mu standing respectively for the lattice parameter of H_4, the usual 4 Dirac matrices and the 4D wave vector. Other features such as differences with BBTW model as well as the link between the Dirac operator following from our construction and the one suggested by Creutz using quaternions, are also given. Keywords: Graphene, Lattice QCD, 4D hyperdiamond, BBTW model, SU(5) Symmetry.Comment: LaTex, 26 pages, 1 figure, To appear in Phys Rev

    Building SO10_{10}- models with D4\mathbb{D}_{4} symmetry

    Full text link
    Using characters of finite group representations and monodromy of matter curves in F-GUT, we complete partial results in literature by building SO10% _{10} models with dihedral D4\mathbb{D}_{4} discrete symmetry. We first revisit the S4\mathbb{S}_{4}-and S3\mathbb{S}_{3}-models from the discrete group character view, then we extend the construction to D4\mathbb{D}_{4}.\ We find that there are three types of SO10Γ—D4SO_{10}\times \mathbb{D}_{4} models depending on the ways the S4\mathbb{S}_{4}-triplets break down in terms of irreducible D4\mathbb{D}_{4}- representations: (Ξ±)\left({\alpha} \right) as 1+,βˆ’βŠ•1+,βˆ’βŠ•1βˆ’,+;\boldsymbol{1}_{_{+,-}}\oplus \boldsymbol{1}_{_{+,-}}\oplus \boldsymbol{1}_{_{-,+}}; or $\left({\beta}\right) \boldsymbol{\ 1}_{_{+,+}}\oplus \boldsymbol{1}_{_{+,-}}\oplus \boldsymbol{1}_{_{-,-}};oralso or also \left({\gamma}\right) \mathbf{1}_{_{+,-}}\oplus \mathbf{2}_{_{0,0}}$. Superpotentials and other features are also given.Comment: 20 pages, Nuclear Physics B (2015
    • …
    corecore