7 research outputs found
Air-ground temperature coupling and subsurface propagation of annual temperature signals
Borehole-based reconstructions of ground surface temperature (GST) have been widely used as indicators of paleoclimate. These reconstructions assume that heat transport within the subsurface is conductive. Climatic interpretations of GST reconstructions also assume that GST is strongly coupled to surface air temperature (SAT) on timescales of decades and longer. We examine these two assumptions using records of SAT and subsurface temperature time series from Fargo, North Dakota; Prague, Czech Republic; Cape Henlopen State Park, Delaware; and Cape Hatteras National Seashore, North Carolina. The characteristics of downward propagating annual temperature signals at each site clearly indicate that heat transport can be described as one-dimensional conduction in a homogeneous medium. Extrapolations of subsurface observations to the ground surface yield estimates of annual GST signals and allow comparisons to annual SAT signals. All annual GST signals are modestly attenuated and negligibly phase shifted relative to SAT. The four sites collectively demonstrate that differences between annual GST and SAT signals arise in both summer and winter seasons, in amounts dependent on the climatic setting of each site
Daily, seasonal, and annual relationships between air and subsurface temperatures
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95285/1/jgrd11942.pd
Models of Talik, Permafrost and Gas Hydrate Histories—Beaufort Mackenzie Basin, Canada
Models of talik, permafrost and gas hydrate (GH) histories below shallow lakes are investigated and compared to models of Beaufort Mackenzie Basin (BMB) GH occurrences to describe lacustrine inundation effects, which are compared against factors controlling the variations among Mackenzie Delta (MD) permafrost, GH and talik occurrence. Models using a 2–4 °C boundary temperature range indicate that geological setting, specifically underlying lithology and porosity, are the primary controls in talik formation below lakes. Below a lake of any size, where the underlying lithology is sandy it is practically impossible to produce a pervasive talik or to completely degrade significant GH accumulations in response to the boundary condition thermal effects alone. Models predict that talik formation is, in such cases, restricted to the upper few tens of meters below the lake. Permafrost degradation appears common where porosities are <40% and water bottom temperatures reach 2–4 °C, in both marine and lacustrine settings. Where porosities are higher a thin GH stability zone can persist, even where deep taliks have formed
Methane Gas Hydrate Stability Models on Continental Shelves in Response to Glacio-Eustatic Sea Level Variations: Examples from Canadian Oceanic Margins
We model numerically regions of the Canadian continental shelves during successive glacio-eustatic cycles to illustrate past, current and future marine gas hydrate (GH) stability and instability. These models indicated that the marine GH resource has dynamic features and the formation age and resource volumes depend on the dynamics of the ocean-atmosphere system as it responds to both natural (glacial-interglacial) and anthropogenic (climate change) forcing. Our models focus on the interval beginning three million years ago (i.e., Late Pliocene-Holocene). They continue through the current interglacial and they are projected to its anticipated natural end. During the current interglacial the gas hydrate stability zone (GHSZ) thickness in each region responded uniquely as a function of changes in water depth and sea bottom temperature influenced by ocean currents. In general, the GHSZ in the deeper parts of the Pacific and Atlantic margins (≥1316 m) thinned primarily due to increased water bottom temperatures. The GHSZ is highly variable in the shallower settings on the same margins (~400–500 m). On the Pacific Margin shallow GH dissociated completely prior to nine thousand years ago but the effects of subsequent sea level rise reestablished a persistent, thin GHSZ. On the Atlantic Margin Scotian Shelf the warm Gulf Stream caused GHSZ to disappear completely, whereas in shallow water depths offshore Labrador the combination of the cool Labrador Current and sea level rise increased the GHSZ. If future ocean bottom temperatures remain constant, these general characteristics will persist until the current interglacial ends. If the sea bottom warms, possibly in response to global climate change, there could be a significant reduction to complete loss of GH stability, especially on the shallow parts of the continental shelf. The interglacial GH thinning rates constrain rates at which carbon can be transferred between the GH reservoir and the atmosphere-ocean system. Marine GH can destabilize much more quickly than sub-permafrost terrestrial GHs and this combined with the immense marine GH reservoir suggests that GH have the potential to affect the climate-ocean system. Our models show that GH stability reacts quickly to water column pressure effects but slowly to sea bottom temperature changes. Therefore it is likely that marine GH destabilization was rapid and progressive in response to the pressure effects of glacial eustatic sea level fall. This suggests against a catastrophic GH auto-cyclic control on glacial-interglacial climate intervals. It is computationally possible but, unfortunately in no way verifiably, to analyze the interactions and impacts that marine GHs had prior to the current interglacial because of uncertainties in temperature and pressure history constraints. Thus we have the capability, but no confidence that we can contribute currently to questions regarding the relationships among climate, glacio-eustatic sea level fluctuations and marine GH stability without improved local temperature and water column histories. We infer that the possibility for a GH control on climate or oceanic cycles is speculative, but qualitatively contrary to our model results
ONSET AND STABILITY OF GAS HYDRATES UNDER PERMAFROST IN AN ENVIRONMENT OF SURFACE CLIMATIC CHANGE - PAST AND FUTURE
Modeling of the onset of permafrost formation and succeeding gas hydrate formation in the changing surface temperature environment has been done for the Beaufort-Mackenzie Basin (BMB). Numerical 1D modeling is constrained by deep heat flow from deep well bottom hole temperatures, deep conductivity, present permafrost thickness and thickness of Type I gas hydrates. Latent heat effects were applied to the model for the entire ice bearing permafrost and Type I hydrate intervals. Modeling for a set of surface temperature forcing during the glacial-interglacial history including the last 14 Myr, the detailed Holocene temperature history and a consideration of future warming due to a doubling of atmospheric CO2 was performed. Two scenarios of gas formation were considered; case 1: formation of gas hydrate from gas entrapped under deep geological seals and case 2: formation of gas hydrate from gas in a free pore space simultaneously with permafrost formation. In case 1, gas hydrates could have formed at a depth of about 0.9 km only some 1 Myr ago. In case 2, the first gas hydrate formed in the depth range of 290 – 300 m shortly after 6 Myr ago when the GST dropped from -4.5 °C to -5.5. °C. The gas hydrate layer started to expand both downward and upward subsequently. More detailed modeling of the more recent glacial–interglacial history and extending into the future was done for both BMB onshore and offshore models. These models show that the gas hydrate zone, while thinning will persist under the thick body of BMB permafrost through the current interglacial warming and into the future even with a doubling of atmospheric CO2.Non UBCUnreviewe