22 research outputs found
Swelling and Mechanical Characterization of Polyelectrolyte Hydrogels as Potential Synthetic Cartilage Substitute Materials
Hydrogels have become an increasingly interesting topic in numerous fields of application. In addition to their use as immobilization matrixes in (bio)catalysis, they are widely used in the medical sector, e.g., in drug delivery systems, contact lenses, biosensors, electrodes, and tissue engineering. Cartilage tissue engineering hydrogels from natural origins, such as collagen, hyaluronic acid, and gelatin, are widely known for their good biocompatibility. However, they often lack stability, reproducibility, and mechanical strength. Synthetic hydrogels, on the other hand, can have the advantage of tunable swelling and mechanical properties, as well as good reproducibility and lower costs. In this study, we investigated the swelling and mechanical properties of synthetic polyelectrolyte hydrogels. The resulting characteristics such as swelling degree, stiffness, stress, as well as stress-relaxation and cyclic loading behavior, were compared to a commercially available biomaterial, the ChondroFiller® liquid, which is already used to treat articular cartilage lesions. Worth mentioning are the observed good reproducibility and high mechanical strength of the synthetic hydrogels. We managed to synthesize hydrogels with a wide range of compressive moduli from 2.5 ± 0.1 to 1708.7 ± 67.7 kPa, which addresses the span of human articular cartilage
ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders
Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders
Genetic architecture of subcortical brain structures in 38,851 individuals
Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease
Mechanical Characterization of Human Trabecular and Formed Granulate Bone Cylinders Processed by High Hydrostatic Pressure
Waletzko-Hellwig J, Saemann M, Schulze M, Frerich B, Bader R, Dau M. Mechanical Characterization of Human Trabecular and Formed Granulate Bone Cylinders Processed by High Hydrostatic Pressure. Materials. 2021;14(5): 1069.One main disadvantage of commercially available allogenic bone substitute materials is the altered mechanical behavior due to applied material processing, including sterilization methods like thermal processing or gamma irradiation. The use of high hydrostatic pressure (HHP) might be a gentle alternative to avoid mechanical alteration. Therefore, we compressed ground trabecular human bone to granules and, afterwards, treated them with 250 and 300 MPa for 20 and 30 min respectively. We characterized the formed bone granule cylinders (BGC) with respect to their biomechanical properties by evaluating stiffness and stress at 15% strain. Furthermore, the stiffness and yield strength of HHP-treated and native human trabecular bone cylinders (TBC) as control were evaluated. The mechanical properties of native vs. HHP-treated TBCs as well as HHP-treated vs. untreated BGCs did not differ, independent of the applied HHP magnitude and duration. Our study suggests HHP treatment as a suitable alternative to current processing techniques for allogenic bone substitutes since no negative effects on mechanical properties occurred
Swelling and Mechanical Characterization of Polyelectrolyte Hydrogels as Potential Synthetic Cartilage Substitute Materials
Hydrogels have become an increasingly interesting topic in numerous fields of application. In addition to their use as immobilization matrixes in (bio)catalysis, they are widely used in the medical sector, e.g., in drug delivery systems, contact lenses, biosensors, electrodes, and tissue engineering. Cartilage tissue engineering hydrogels from natural origins, such as collagen, hyaluronic acid, and gelatin, are widely known for their good biocompatibility. However, they often lack stability, reproducibility, and mechanical strength. Synthetic hydrogels, on the other hand, can have the advantage of tunable swelling and mechanical properties, as well as good reproducibility and lower costs. In this study, we investigated the swelling and mechanical properties of synthetic polyelectrolyte hydrogels. The resulting characteristics such as swelling degree, stiffness, stress, as well as stress-relaxation and cyclic loading behavior, were compared to a commercially available biomaterial, the ChondroFiller® liquid, which is already used to treat articular cartilage lesions. Worth mentioning are the observed good reproducibility and high mechanical strength of the synthetic hydrogels. We managed to synthesize hydrogels with a wide range of compressive moduli from 2.5 ± 0.1 to 1708.7 ± 67.7 kPa, which addresses the span of human articular cartilage
The Morphology of the Femur Influences the Fracture Risk during Stumbling and Falls on the Hip—A Computational Biomechanical Study
Proximal femur fracture risk depends on subject-specific factors such as bone mineral density and morphological parameters. Here, we aim to analyze the dependency of the femoral strength on sixteen morphological parameters. Therefore, finite-element analyses of 20 human femurs during stumbling and lateral falls on the hip were conducted. Pearson correlation coefficients were calculated and morphological parameters with significant correlations were examined in principal component analysis and linear regression analysis. The dependency of the fracture strength on morphological parameters was more pronounced during lateral falls on the hip compared to stumbling. Significant correlations were observed between the neck shaft angle (r = −0.474), neck diameter (r = 0.507), the true distance between the femoral head center and femoral shaft axis (r = 0.459), and its projected distance on the frontal plane (r = 0.511), greater trochanter height (r = 0.497), and distance between the femoral head center and a plane parallel to the frontal plane containing the projection of the femoral head center to the femoral neck axis (r = 0.669). Principal component analysis was strongly weighted by parameters defining the lever arm during a lateral fall as well as the loaded cross-section in the femoral neck
Recommended from our members
Pupil Dilation during Reward Anticipation Is Correlated to Depressive Symptom Load in Patients with Major Depressive Disorder.
Depression is a debilitating disorder with high prevalence and socioeconomic cost, but the brain-physiological processes that are altered during depressive states are not well understood. Here, we build on recent findings in macaques that indicate a direct causal relationship between pupil dilation and anterior cingulate cortex mediated arousal during anticipation of reward. We translated these findings to human subjects with concomitant pupillometry/fMRI in a sample of unmedicated participants diagnosed with major depression and healthy controls. We could show that the upregulation and maintenance of arousal in anticipation of reward was disrupted in patients in a symptom-load dependent manner. We could further show that the failure to maintain reward anticipatory arousal showed state-marker properties, as it tracked the load and impact of depressive symptoms independent of prior diagnosis status. Further, group differences of anticipatory arousal and continuous correlations with symptom load were not traceable only at the level of pupillometric responses, but were mirrored also at the neural level within salience network hubs. The upregulation and maintenance of arousal during reward anticipation is a novel translational and well-traceable process that could prove a promising gateway to a physiologically informed patient stratification and targeted interventions
Pupil Dilation during Reward Anticipation Is Correlated to Depressive Symptom Load in Patients with Major Depressive Disorder
Depression is a debilitating disorder with high prevalence and socioeconomic cost, but the brain-physiological processes that are altered during depressive states are not well understood. Here, we build on recent findings in macaques that indicate a direct causal relationship between pupil dilation and anterior cingulate cortex mediated arousal during anticipation of reward. We translated these findings to human subjects with concomitant pupillometry/fMRI in a sample of unmedicated participants diagnosed with major depression and healthy controls. We could show that the upregulation and maintenance of arousal in anticipation of reward was disrupted in patients in a symptom-load dependent manner. We could further show that the failure to maintain reward anticipatory arousal showed state-marker properties, as it tracked the load and impact of depressive symptoms independent of prior diagnosis status. Further, group differences of anticipatory arousal and continuous correlations with symptom load were not traceable only at the level of pupillometric responses, but were mirrored also at the neural level within salience network hubs. The upregulation and maintenance of arousal during reward anticipation is a novel translational and well-traceable process that could prove a promising gateway to a physiologically informed patient stratification and targeted interventions
Recommended from our members
Pupil Dilation during Reward Anticipation Is Correlated to Depressive Symptom Load in Patients with Major Depressive Disorder.
Depression is a debilitating disorder with high prevalence and socioeconomic cost, but the brain-physiological processes that are altered during depressive states are not well understood. Here, we build on recent findings in macaques that indicate a direct causal relationship between pupil dilation and anterior cingulate cortex mediated arousal during anticipation of reward. We translated these findings to human subjects with concomitant pupillometry/fMRI in a sample of unmedicated participants diagnosed with major depression and healthy controls. We could show that the upregulation and maintenance of arousal in anticipation of reward was disrupted in patients in a symptom-load dependent manner. We could further show that the failure to maintain reward anticipatory arousal showed state-marker properties, as it tracked the load and impact of depressive symptoms independent of prior diagnosis status. Further, group differences of anticipatory arousal and continuous correlations with symptom load were not traceable only at the level of pupillometric responses, but were mirrored also at the neural level within salience network hubs. The upregulation and maintenance of arousal during reward anticipation is a novel translational and well-traceable process that could prove a promising gateway to a physiologically informed patient stratification and targeted interventions