994 research outputs found

    Interaction of numerosity and time in prefrontal and parietal cortex

    Get PDF
    It has been proposed that numerical and temporal information are processed by partially overlapping magnitude systems. Interactions across different magnitude domains could occur both at the level of perception and decision-making. However, their neural correlates have been elusive. Here, using functional magnetic resonance imaging in humans, we show that the right intraparietal cortex (IPC) and inferior frontal gyrus (IFG) are jointly activated by duration and numerosity discrimination tasks, with a congruency effect in the right IFG. To determine whether the IPC and the IFG are involved in response conflict (or facilitation) or modulation of subjective passage of time by numerical information, we examined their functional roles using transcranial magnetic stimulation (TMS) and two different numerosity-time interaction tasks: duration discrimination and time reproduction tasks. Our results show that TMS of the right IFG impairs categorical duration discrimination, whereas that of the right IPC modulates the degree of influence of numerosity on time perception and impairs precise time estimation. These results indicate that the right IFG is specifically involved at the categorical decision stage, whereas bleeding of numerosity information on perception of time occurs within the IPC. Together, our findings suggest a two-stage model of numerosity-time interactions whereby the interaction at the perceptual level occurs within the parietal region and the interaction at categorical decisions takes place in the prefrontal cortex

    社会的起業家

    Get PDF

    Isolated effective coherence (iCoh): causal information flow excluding indirect paths

    Full text link
    A problem of great interest in real world systems, where multiple time series measurements are available, is the estimation of the intra-system causal relations. For instance, electric cortical signals are used for studying functional connectivity between brain areas, their directionality, the direct or indirect nature of the connections, and the spectral characteristics (e.g. which oscillations are preferentially transmitted). The earliest spectral measure of causality was Akaike's (1968) seminal work on the noise contribution ratio, reflecting direct and indirect connections. Later, a major breakthrough was the partial directed coherence of Baccala and Sameshima (2001) for direct connections. The simple aim of this study consists of two parts: (1) To expose a major problem with the partial directed coherence, where it is shown that it is affected by irrelevant connections to such an extent that it can misrepresent the frequency response, thus defeating the main purpose for which the measure was developed, and (2) To provide a solution to this problem, namely the "isolated effective coherence", which consists of estimating the partial coherence under a multivariate auto-regressive model, followed by setting all irrelevant associations to zero, other than the particular directional association of interest. Simple, realistic, toy examples illustrate the severity of the problem with the partial directed coherence, and the solution achieved by the isolated effective coherence. For the sake of reproducible research, the software code implementing the methods discussed here (using lazarus free-pascal "www.lazarus.freepascal.org"), including the test data as text files, are freely available at: https://sites.google.com/site/pascualmarqui/home/icoh-isolated-effective-coherenceComment: 2014-02-21 pre-print, technical report, KEY Institute for Brain-Mind Research, University of Zurich, et a

    Neural networks for action representation: a functional magnetic-resonance imaging and dynamic causal modeling study

    Get PDF
    Automatic mimicry is based on the tight linkage between motor and perception action representations in which internal models play a key role. Based on the anatomical connection, we hypothesized that the direct effective connectivity from the posterior superior temporal sulcus (pSTS) to the ventral premotor area (PMv) formed an inverse internal model, converting visual representation into a motor plan, and that reverse connectivity formed a forward internal model, converting the motor plan into a sensory outcome of action. To test this hypothesis, we employed dynamic causal-modeling analysis with functional magnetic-resonance imaging (fMRI). Twenty-four normal participants underwent a change-detection task involving two visually-presented balls that were either manually rotated by the investigator's right hand (“Hand”) or automatically rotated. The effective connectivity from the pSTS to the PMv was enhanced by hand observation and suppressed by execution, corresponding to the inverse model. Opposite effects were observed from the PMv to the pSTS, suggesting the forward model. Additionally, both execution and hand observation commonly enhanced the effective connectivity from the pSTS to the inferior parietal lobule (IPL), the IPL to the primary sensorimotor cortex (S/M1), the PMv to the IPL, and the PMv to the S/M1. Representation of the hand action therefore was implemented in the motor system including the S/M1. During hand observation, effective connectivity toward the pSTS was suppressed whereas that toward the PMv and S/M1 was enhanced. Thus, the action-representation network acted as a dynamic feedback-control system during action observation
    corecore