29 research outputs found

    The Chemical Chelates and a Comparative Antimicrobial Study on Some Ciprofloxacin Complexes, Spectral, Kinetic and Molecular Modeling Investigations

    Get PDF
    A series of ciproH antibiotic drug complexes was prepared. Cu(II), VO(II), Pd(II), Zn(II), Pt(II) and Pt(IV) are the metal ions used for the preparations. The chosen ions have a great history in the medicinal field which may introduce a sensitive antibiotic appearance in comparing with the free ciproH drug. All the prepared complexes are discussed briefly based on spectral ( IR, 1HNMR, 13CNMR, Uv-Vis, ESR, X- ray and SEM), thermal and analytical data. The ligand coordinates through its zwitterionic form as bidentate mod through COO- and C=O groups. The octahedral stereo structure was prepared with Cu(II), Zn(II) and Pt(IV) ions, square planer with Pd(II) and Pt(II) ions however, the square – pyramidal with VO(II) ion. The amorphous nature was proposed for all investigated complexes based on the x- ray diffraction patterns although, the nanocrystalline appearance of starting ligand. Thermogravimetric analysis is also used to support the presence or absence of solvent molecules conjugated with the complexes isolated physically or chemically. Applying Chem- office program a suitable modeling structure of each investigated complex was drawn. A comparative antibacterial study was concerned using Gramm –ve and Gramm +ve bacteria . The data reflect the inhibiting effect of some complexes more than the drug itself which is considered an introductory step in introducing competitive drug. Key words: ciprofloxacin complexes, spectral, modeling and biological activit

    rac-N-{6-[Bromo­(hydr­oxy)meth­yl]-2-pyrid­yl}pivalamide

    Get PDF
    The title compound, C11H15BrN2O2, contains an amide group which is close to coplanar with the adjacent pyridine ring, the dihedral angle between the planes being 9.0 (5)°. The mol­ecular packing reveals a mutual hydrogen-bond inter­action between centrosymmetrically related hydroxyl O atoms. Further hydrogen bonding involving O—H⋯Br and N—H⋯Br inter­actions also appears to consolidate the packing

    Co-ordinative properties of a tripodal trisamide ligand with a capped octahedral preference

    No full text
    An investigation into the co-ordination chemistry of tris(6-pivaloylamino-2-pyridylmethyl)amine (TPPA) shows a preference for capped octahedral geometry when no additional donors are present. This tripodal ligand yields capped octahedral complexes upon co-ordination to a series of first row transition metals when the counter-ion is a perchlorate, bromide or iodide ion. The exact geometry has been confirmed by shape mapping calculations. The largest variation from the capped octahedral geometry is observed in the case of nickel(II), indicating a greater octahedral preference of this metal ion

    Sawdust Recycling in the Development of Permeable Clay Paving Bricks: Optimizing Mixing Ratio and Particle Size

    No full text
    The permeable pavement system (PPS) has effectively contributed to stormwater management as a low-impact development (LID) technology. The suitability of clay bricks, consolidated with waste materials, for sustainable PPS applications in urban infrastructure needs further attention. In this study, several series of permeable clay paving bricks samples were prepared by mixing different ratios and particle sizes of sawdust (SD) with clay soil and firing at 900 °C. The raw soil and SD samples were characterized through sieve analysis, X-ray Fluorescence (XRF), X-ray diffraction (XRD), and Fourier-Transform Infrared Spectroscopy (FTIR). The bricks were tested for their compressive strength, bulk density, apparent porosity, water adsorption, permeability coefficient, and stormwater treatment efficiency. The clay soil comprised 17.5% clay/silt with appropriate amounts of SiO2 (50.47%), Al2O3 (19.14%), and fluxing agents (15.34%) and was suitable for brick manufacturing. XRD and FTIR analysis revealed that the soil predominantly comprises quartz, dolomite calcite, feldspar, kaolinite, illite, and chlorites. The SD samples were enriched with amorphous and crystalline cellulose. The compressive strength of the bricks decreased, while the permeability of the bricks increased with an increasing percentage of SD. An optimal percentage of 10% SD achieved a 21.2 MPa compressive strength and a 0.0556 m/s permeability coefficient, meeting the ASTM specifications for PPS. The optimal size of SD, between 0.5 and 1.0 mm, achieved the desired compressive strength of the bricks. The permeable bricks effectively removed the total suspended solids (TSS), turbidity, and BOD5 from the stormwater, which complies with the guidelines for wastewater reuse applications

    Evaluating Permeable Clay Brick Pavement for Pollutant Removal from Varying Strength Stormwaters in Arid Regions

    No full text
    Permeable pavement is a low impact development technology for stormwater (SW) runoff control and pollutant removal. The strength of SW depends on land use of the catchment, e.g., semi-urban vs. industrial. The performance (in terms of pollutants removal) of permeable clay bricks (PCB) has not been adequately assessed for SW of varying strengths. For using the permeable clay bricks as a pavement surface layer, the present research investigates its pollutant removal capacity through SW infiltration using a laboratory setup. SW samples of two different strengths, i.e., high polluted stormwater (HPSW) and less polluted stormwater (LPSW), were tested for a pavement system consisting of the clay brick layer on top of a coarse gravel support layer. The tests were performed at a rainfall intensity of 12.5 mm/h (for a 10-year return period in Buraidah, Qassim) to evaluate the suitability of PCB for the arid and semi-arid regions. The experiments revealed that PCB became fully saturated and achieved a steady-state outflow condition after 10 min of rainfall. Irrespective of contamination level, the pollutant removal efficiency was found to be similar for both HPSW and LPSW. High TSS (>98%) and turbidity (>99%) removals were achieved for both strengths, while BOD5 (78.4%) and COD (76.1%) removals were moderate. Poor to moderate nutrient removal, 30.5% and 39.1% for total nitrogen (TN) and 34.7% and 31.3% for total phosphorus (TP), respectively for HPSW and LPSW, indicates an adsorptive removal of nutrients in the system. Heavy metal removal efficiency ranged from 6.7% to 94%, with higher removals archived for Fe, Mn, Se, and Pb. The study provides insights into the role of PCB as a surface layer in the permeable pavement for pollutant removal. The study also establishes the guidelines for the optimal permeable pavement design to deal with SW of varying contamination levels. Permeable clay bricks showed the potential to be used as a sustainable LID technology for arid regions

    Evaluating Permeable Clay Brick Pavement for Pollutant Removal from Varying Strength Stormwaters in Arid Regions

    No full text
    Permeable pavement is a low impact development technology for stormwater (SW) runoff control and pollutant removal. The strength of SW depends on land use of the catchment, e.g., semi-urban vs. industrial. The performance (in terms of pollutants removal) of permeable clay bricks (PCB) has not been adequately assessed for SW of varying strengths. For using the permeable clay bricks as a pavement surface layer, the present research investigates its pollutant removal capacity through SW infiltration using a laboratory setup. SW samples of two different strengths, i.e., high polluted stormwater (HPSW) and less polluted stormwater (LPSW), were tested for a pavement system consisting of the clay brick layer on top of a coarse gravel support layer. The tests were performed at a rainfall intensity of 12.5 mm/h (for a 10-year return period in Buraidah, Qassim) to evaluate the suitability of PCB for the arid and semi-arid regions. The experiments revealed that PCB became fully saturated and achieved a steady-state outflow condition after 10 min of rainfall. Irrespective of contamination level, the pollutant removal efficiency was found to be similar for both HPSW and LPSW. High TSS (>98%) and turbidity (>99%) removals were achieved for both strengths, while BOD5 (78.4%) and COD (76.1%) removals were moderate. Poor to moderate nutrient removal, 30.5% and 39.1% for total nitrogen (TN) and 34.7% and 31.3% for total phosphorus (TP), respectively for HPSW and LPSW, indicates an adsorptive removal of nutrients in the system. Heavy metal removal efficiency ranged from 6.7% to 94%, with higher removals archived for Fe, Mn, Se, and Pb. The study provides insights into the role of PCB as a surface layer in the permeable pavement for pollutant removal. The study also establishes the guidelines for the optimal permeable pavement design to deal with SW of varying contamination levels. Permeable clay bricks showed the potential to be used as a sustainable LID technology for arid regions

    Efficient Disposal of Rhodamine 6G and Acid Orange 10 Dyes from Aqueous Media Using ZrO<sub>2</sub>/CdMn<sub>2</sub>O<sub>4</sub>/CdO as Novel and Facilely Synthesized Nanocomposites

    No full text
    It is essential to remove rhodamine 6G and acid orange 10 dyes from contaminated water because they can induce cancer and irritate the lungs, skin, mucous, membranes, and eyes. Hence, in the current work, the Pechini sol–gel method was used for the facile synthesis of ZrO2/CdMn2O4/CdO as novel nanocomposites at 600 and 800 °C. The synthesized nanocomposites were used as novel adsorbents for the efficient removal of rhodamine 6G and acid orange 10 dyes from aqueous media. The nanocomposites, which were synthesized at 600 and 800 °C, were abbreviated as EK600 and EK800, respectively. The synthesized nanocomposites were characterized by EDS, XRD, N2 adsorption/desorption analyzer, and FE-SEM. The patterns of XRD showed that the average crystal size of the EK600 and EK800 nanocomposites is 68.25 and 85.32 nm, respectively. Additionally, the images of FE-SEM showed that the surface of the EK600 nanocomposite consists of spherical, polyhedral, and rod shapes with an average grain size of 99.36 nm. Additionally, the surface of the EK800 nanocomposite consists of polyhedral and spherical shapes with an average grain size of 143.23 nm. In addition, the BET surface area of the EK600 and EK800 nanocomposites is 46.33 and 38.49 m2/g, respectively. The optimal conditions to achieve the highest removal of rhodamine 6G and acid orange 10 dyes are pH = 8, contact time = 24 min, and temperature = 298 kelvin. The greatest removal capacity of the EK600 and EK800 adsorbents towards rhodamine 6G dye is 311.53 and 250.63 mg/g, respectively. Additionally, the greatest removal capacity of the EK600 and EK800 adsorbents towards acid orange 10 dye is 335.57 and 270.27 mg/g, respectively. The removal of rhodamine 6G and acid orange 10 dyes using the EK600 and EK800 adsorbents is spontaneous, exothermic, follows the Langmuir adsorption isotherm, and fits well with the pseudo-first-order kinetic model
    corecore